事象:配管(1次冷却材管)

美浜3号炉-熱時効-4rev3

タイトル	(5-4-14, 15, 16, 17頁) 母管の熱時効に係る健全性評価の具体的内容について
説明	 次冷封材管の健全性評価は以下の手順で実施している。 評価対象部位の抽出 対象配管のうち脆化条件の厳しい部位および応力条件の厳しい部位を 抽出 評価用初期欠陥の想定 初期欠陥の大きさは、PSIの欠陥検出限界に十分な余裕を見て安全側 に定める 疲労き裂進展解析 配管内面に想定する初期き裂が、プラント運転時に生じる応力サイク ルにより、プラント供用60年の間に進展する量を求める き裂安定性評価用想定き裂の想定 前項で求めた進展を考慮し、貫通き裂を想定する き裂安定性評価 各供用状態の荷重から算出されるき裂進展力を示すパラメータ J 積分 値 J app と熱時効後のき裂進展抵抗 J mat を用いて評価を行う 詳細を以下の添付-1に示す。

1. 評価対象部位の抽出

(1) 評価対象部位の選別

以下の図面に1次冷却材管の熱時効対象部位を示し、次ページ表に対象部位のフェライト量と応力(Ss地震動による地震応力を含む)を比較した表を示し、応力が最大の部位またはフェライト量が最も多い部位を評価点とする。更にエルボで応力の高い部位も評価点とした。

応力最大:ホットレグ直管

フェライト量最多:クロスオーバレグRCP側90° エルボ

その他対象:SG入口50°エルボ

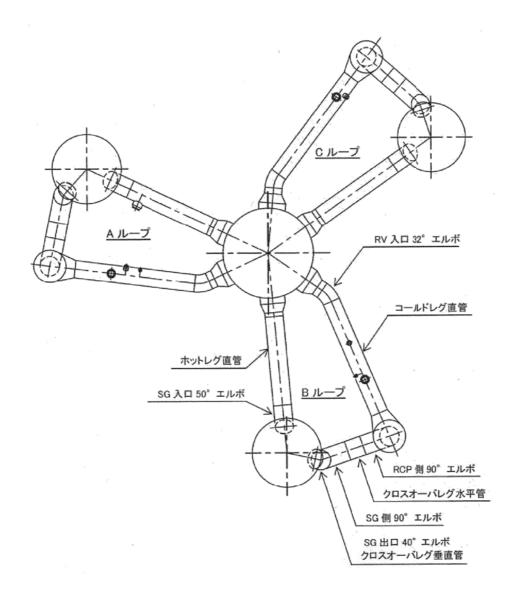


図1.1 1次冷却材管熱時効評価対象部位

表1.1 評価対象部位一覧

評 価 部 位	フェライト 量 [%]	使用温度	応力 [MPa]	選定
ホットレグ直管	約16.1	322. 8	約193	0
SG入口50°エルボ	約15.6	322. 8	約175	0
SG出口40°エルボ	約10.1	288. 6	約126	
クロスオーバレグ直管 (垂直管)	約13.8	288. 6	約107	
クロスオーバレグ SG側90°エルボ	約16.1	288. 6	約79	
クロスオーバレグ直管 (水平管)	約11.4	288. 6	約80	
クロスオーバレグ RCP側90°エルボ	約18.2	288. 6	約79	0
コールドレグ直管	約14.1	288. 6	約111	
RV入口32°エルボ	約16.1	288.6	約91	

応力は供用状態A,Bの内圧、自重・熱膨張荷重、地震荷重 (Ss) を考慮している。 熱時効評価対象部位の詳細な応力値を以下の表に示す。

表1.2 熱時効対象部位の応力詳細

評価部位	内圧に よる応	曲げ応	カ			軸力によ	る応力			合算値 (MPa)
	力 (MPa)	自重 (MPa)	熱 (MPa)	地震 (MPa)	合計 (MPa)	自重 (MPa)	熱 (MPa)	地震 (MPa)	合計 (MPa)	
ホットレグ 直管	40.8	6, 9	50. 2	61. 4	118. 5	0.0	0. 7	32. 1	32.8	193
クロスオー バレグRCP 側90°ェルボ	40.8	0.6	7.6	24.8	33. 0	0.0	0.1	4.7	4.8	79
SG入口50° エルボ	40.8	3. 2	40. 5	71.5	115. 2	0.1	3. 1	15. 8	19.0	175

また、フェライト量算出に当たっては、以下の材料成分表と以下のグラフ(引用文献は ASTM A800)を用いて算出している。なお、他にフェライト量算出方法としてHull式が提唱 (Estimation of Fracture Toughness of Cast Stainless Steels During Thermal Aging in LWR Systems (NUREG/CR-4513, ANL-15/08, Revision 2) 以下NUREG/CR-4513r2と記載) されており、参考値としてHull式によるフェライト量も算出した。

33 In to 14			化	学成分(洛	容鋼分析)	%	200		0 /2:	フェライト量
評価部位	С	Si	Mn	Cr	Ni	Мо	Cb (Nb)	N	Cr _e /Ni _e	F% [®]
ホットレグ 直管	 						-'' ·		1.319	約 16.1 (約 19.2)
クロスオー バレグRCP側 90°エルボ									1, 357	約18.2 (約21.7)
SG入口50° エルボ	•								1. 309	約15.6 (約18.2)

表1.3 製造時のミルシート

[※] ASTM A800によるフェライト量。 () 内はHull式によるフェライト量 (参考値)

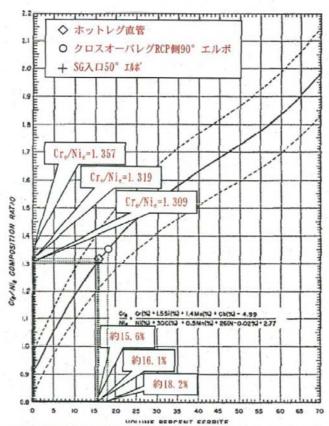


Fig. X1.1 Schoefer Diagram for Estimating the Average Ferrite Content in Austentitic Iron-Chromium-Nickel Alloy Castings

図1.2 フェライト量導出図

なお、応力による評価部位選定において、SG入口50°エルボ等の応力の比較的高いエルボでは、形状効果により想定欠陥に対するJappの値が高くなる場合があることから、エルボの曲率部で応力の高い部位は評価対象に加えた。

美浜3号機の評価対象部位は、応力最大部位としてホットレグ直管を、フェライト 量最多部位としてクロスオーバレグ90°エルボを選定、さらに、SG入口50°エルボ についても、エルボの曲がり部の効果によるJappの値が高くなると考えられることか ら5.(5)き裂安定性評価においてその評価を行っている。

以上を考慮することで、想定するき裂に対して、き裂進展力としてのJappが最大となる部位の評価ができるようにしている。

2. 評価用初期欠陥の想定

初期欠陥の大きさは、PSIの欠陥検出限界に十分な余裕をみて安全側に定めるものとする。単一欠陥の寸法については原子力発電所配管破損防護設計技術指針(JEAG4613-1998)のものを用いている。すなわち初期欠陥は0.2t(深さa₀)×1.0t(表面長さ2c₀)(tは板厚)の半楕円形の内表面周方向欠陥とする。初期欠陥の形状を図2.1に示す。平成16年度原子力発電施設検査技術実証事業に関する報告書(超音波探傷試験における欠陥検出性及びサイジング精度の確認に関するもの)では、ステンレス鋳鋼の疲労き裂において検出率100%に達する最小欠陥深さは約0.18tであり、本評価で用いる値は保守的であることを確認した。なお、当該報告書の超音波探傷試験と供用期間中検査で実施している1次冷却材管の超音波探傷試験は同等の探触子と検査員資格で実施している。

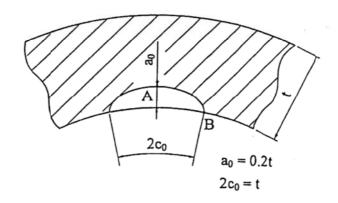


図2.1 初期欠陥の形状

3. 疲労き裂進展解析

(1)解析条件

配管の内面に想定する初期き裂が、プラント運転時に生じる応力サイクルにより 供用期間60年の間に進展する量を求める。

i) き裂進展解析に用いる応力サイクル

使用する応力サイクルは実機運転状態を考慮し、実過渡条件に基づいて設定する。実過渡条件による応力サイクルを表3.1~表3.3に示す。これらは2010年度までの実績過渡回数よりプラント運転期間60年までを想定し過渡回数を記載している。なお、2011年度以降の期間は実績より保守的*な回数の過渡が発生すると仮定して回数を推定した。

*:評価条件として、2011年5月から2017年9月まで冷温停止状態、2011年 度以降の過渡発生頻度は実績の1.5倍以上を想定した。

ii) 疲労き裂進展速度

疲労き裂進展速度は国内軽水炉条件下のデータに基づく以下の式を使用する。(JEAG4613-1998 参照)

$$da/dN = C(\Delta K)^{m}$$
$$\Delta K = K_{max} - K_{min}$$

ここで,

da/dN ; 疲労き裂進展速度 (m/cycle)

C ; 定数 = 7.77×10⁻¹²

m ; 定数 = 3.5

 ΔK ;応力拡大係数変動幅(MPa√m)

 K_{max} , K_{min} ; 最大および最小応力拡大係数($MPa\sqrt{m}$)

また、ここではステンレス鋳鋼に対する速度を使用する。なお、電共研「PWR 配管破断防護設計の合理化に関する研究」において、時効の有無によってき裂進展速度に有意な差がないことを確認している。

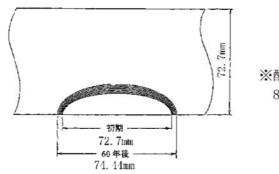
表3.1 応力サイクル (ホットレグ直管)

	10-1	1/	
過渡条件	過渡回数	膜応力 (MPa) σ mmax σ mmin	曲げ応力 (MPa) σ bmax σ bmin
1. 起動・停止	78	112. 57	71. 96
2. 負荷上昇(15%から100%出力)	706	121. 50 111. 03	82. 10
3. 負荷減少 (100%から15%出力)	691	121. 13 110. 12	83. 05
4. 90%から100%へのステップ状負荷上昇	3	121. 57 118. 69	57. 47
5. 100%から90%へのステップ状負荷減少	3	121. 44	57. 66
6. 100%からの大きいステップ状負荷減少	7	123. 60 107. 11	86. 14
7. 定常負荷運転時の変動	0	122. 21 118. 69	53. 36
8. 燃料交換	52	17. 31	45. 45 0. 00
9.0%から15%への負荷上昇	84	113. 75 112. 57	50. 59 46. 74
10. 15%から0%への負荷減少	69	113. 75 112. 57	54. 98
11. 1ループ停止/1ループ起動 [停止]	1	119. 88 106. 99	120. 08
12. 1ループ停止/1ループ起動 [起動]	1	113. 99 112. 04	60. 21 45. 70
13. 負荷の喪失	6	129. 41 105. 77	109. 38 27. 62
14. 外部電源喪失	5	126. 18 115. 53	63. 38
15. 1 次冷却材流量の部分喪失	1	120. 97 101. 98	131. 08 36. 63
16. 100%からの原子炉トリップ (I) 不注意な冷却を伴わないトリップ	7	120. 49 103. 95	126. 08 38. 89
17. 100%からの原子炉 \リップ (II) 不注意な冷却を伴うトリップ	2	120. 45 98. 50	142. 33 35. 30
18. (Ⅲ) 不注意な出場をドライバル 18. (Ⅲ) 不注意な冷却と安全注入を伴うトリップ	1	120. 45 84. 82	181. 14 33. 82
19. 1 次冷却系の異常な減圧	1	120. 45 67. 50	148. 33
20. 制御棒クラスタの落下	4	120. 60 97. 81	144. 89 34. 42
21. 出力運転中の非常用炉心冷却系の誤起動	1	120. 45 98. 12	137. 07
22. 1 次冷却系停止ループの誤起動	1	124. 51 104. 44	110. 19
23. タービン回転試験	6	97. 10	77. 78
24. 1 次系漏えい試験	64	100. 35	77. 08
25. 1/3Sd地震	360	124. 04 119. 13	46. 74

表3.2 応力サイクル (クロスオーバレグ RCP 側 90° エルボ)

過渡条件	過渡	膜応力 (MPa)	曲げ応力 (MPa)
	回数	σ mmax σ mmin	σ bmax σ bmin
1. 起動・停止	78	62. 76	101. 99
2. 負荷上昇(15%から100%出力)	706	63. 61	82. 62 59. 14
3. 負荷減少(100%から15%出力)	691	63. 63	81. 49
4.90%から100%へのステップ状負荷上昇	3	63. 77	78. 34 63. 63
5. 100%から90%へのステップ状負荷減少	3	63. 95	78. 37 62. 19
6. 100%からの大きいステップ状負荷減少	7	65. 51 56. 87	89. 18
7. 定常負荷運転時の変動	0	64. 12	76. 89
8. 燃料交换	52	3. 42	47. 84 0. 00
9.0%から15%への負荷上昇	84	62. 78	70. 28
10. 15%から0%への負荷減少	69	62. 78	70. 58
11. 1ループ停止/1ループ起動 [停止]	1	63. 74	80. 75
12. 1ループ停止/1ループ起動 [起動]	1	63. 24	72. 74
13. 負荷の喪失	6	70. 74	102. 90
14. 外部電源喪失	5	70. 43	106. 82
15. 1 次冷却材流量の部分喪失	1	63. 38	84. 81 52. 41
16. 100%からの原子炉トリップ (I) 不注意な冷却を伴わないトリップ	7	63. 12	81. 67
17 100%からの原子炉トリップ	2	54. 84 63. 12 50. 37	98. 61
11 (Ⅱ) 不注意な冷却を伴うトリップ 18. (Ⅲ) 不注意な冷却と安全注入を伴うトリップ	1	63. 13	48. 87 181. 67
19. 1 次冷却系の異常な減圧	1	45. 97 63. 20	46. 50 139. 22
20. 制御棒クラスタの落下	4	62. 90	11. 07
21. 出力運転中の非常用炉心冷却系の誤起動	1	50. 20 63. 11	52. 29 128. 98
22. 1 次冷却系停止ループの誤起動	1	54. 28 67. 76	56. 54 88. 65
23. タービン回転試験	6	57. 00 62. 76	58. 52 107. 00
24. 1 次系漏えい試験	64	53. 64	59. 65 109. 68
25. 1/3Sd地震	360	70. 75	-30. 06 69. 95
		55. 07	69.95

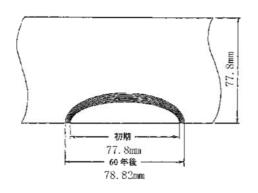
表3.3 応力サイクル (SG 入口 50° エルボ)


過渡条件	過渡回数	膜応力 (MPa) σ mmax	曲げ応力 (MPa) σbmax
1. 起動・停止	78	σ mmin 127.96 6.72	σ bmin 102.53 -26.75
2. 負荷上昇(15%から100%出力)	706	139. 48 126. 73	112. 52
3. 負荷減少 (100%から15%出力)	691	139. 00 125. 71	113. 38
4. 90%から100%へのステップ状負荷上昇	3	139, 52 136, 23	84. 98
5. 100%から90%へのステップ状負荷減少	3	139. 32 135. 10	85. 23 69. 90
6. 100%からの大きいステップ状負荷減少	7	141. 75 122. 62	116. 35 56. 46
7. 定常負荷運転時の変動	0	140. 27 136. 29	80. 72 67. 53
8. 燃料交換	52	17. 67	46. 65
9.0%から15%への負荷上昇	84	129. 51 127. 96	77. 96
10. 15%から0%への負荷減少	69	129. 51 127. 96	82. 20 73. 69
11. 1ループ停止/1ループ起動 [停止]	1	137. 30	147. 99 60. 57
12. 1ループ停止/1ループ起動 [起動]	1	129. 68 127. 26	87. 38 72. 63
13. 負荷の喪失	6	147. 86	139. 25
14. 外部電源喪失	5	144. 01 132. 64	93. 48 68. 30
15. 1 次冷却材流量の部分喪失	1	138. 89	157. 87 58. 51
16. 100%からの原子炉トリップ (I) 不注意な冷却を伴わないトリップ	7	138. 34	152. 89
17. 100%からの原子炉トリップ (Ⅱ) 不注意な冷却を伴うトリップ	2	138, 28	169. 16 55. 66
18. 100%からの原子炉トリップ (Ⅲ) 不注意な冷却と安全注入を伴うトリップ	1	138. 28 95. 61	217. 78
19. 1 次冷却系の異常な減圧	1	138. 28	182. 49
20. 制御棒クラスタの落下	4	138. 48 112. 29	171. 45 54. 59
21. 出力運転中の非常用炉心冷却系の誤起動	1	138. 28 111. 02	169. 76 63. 55
22. 1 次冷却系停止ループの誤起動	1	142. 07	139. 15
23. タービン回転試験	6	127. 96 109. 83	108. 14
24. 1 次系漏えい試験	64	110. 28	110. 68
25. 1/3Sd地震	360	160, 83 115, 87	73. 69

(2)解析結果

疲労き裂進展解析結果は、表3.4~表3.6に示すとおりである。

- 衣	3.4 さ 表 進 展 胜 か	「	ク 旦 官)
	き裂深さ (mm)	き裂長さ (mm)	備考
初 期	$a_0 = 14.54$	$2c_0 = 72.70$	_
60年後	a = 15.80	2c = 74.44	$\Delta a = 1.26 \text{ mm}$ $2 \Delta c = 1.74 \text{ mm}$


表3.4 き裂進展解析結果 (ホットレグ直管)

※配管外径は882 mm

表3.5 き裂進展解析結果 (クロスオーバレグRCP側90° エルボ)


	き裂深さ (mm)	き裂長さ (mm)	備考
初期	$a_0 = 15.56$	$2c_0 = 77.80$	_
60年後	a = 16.61	2c = 78.82	$\Delta a = 1.05 \text{ mm}$ $2 \Delta c = 1.02 \text{ mm}$

※配管外径は 943 mm

表3.6 き裂進展解析結果 (SG入口50° エルボ)

	き裂深さ (mm)	き裂長さ (mm)	備考
初 期	$a_0 = 15.56$	$2c_0 = 77.80$	
60年後	a = 18.00	2c = 79.72	$\Delta a = 2. 44 \text{ mm}$ $2 \Delta c = 1. 92 \text{ mm}$

※配管外径は943 mm

4. き裂安定性評価用想定き裂の想定

き裂安定性評価では、安全側に評価するため、3項で算出した疲労き裂を貫通き裂に置換える。(図4.1参照)

き裂安定性評価に用いる想定き裂を表4.1に示す。

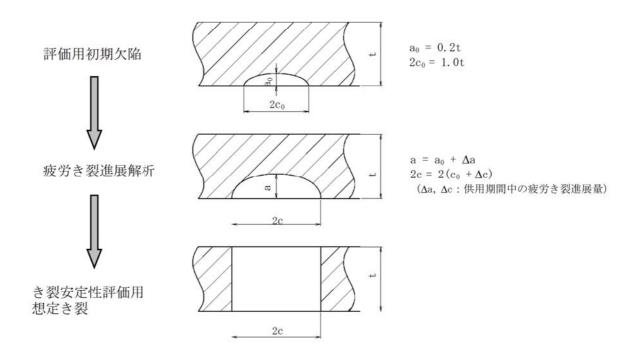


図4.1 想定き裂置換えイメージ

表4.1 き裂安定性評価用想定き裂

	き裂長さ (mm)	板厚 (mm)
ホットレグ直管	74. 44	72. 70
クロスオーバレグ RCP側90°エルボ	78. 82	77.80
SG入口50° エルホ゛	79. 72	77.80

5. き裂安定性評価

(1) 評価方法

重大事故等時の荷重条件を包絡した評価を行う。このため重大事故等時(原子 炉停止機能喪失時)荷重+Ss地震動の荷重により想定き裂に生じるき裂進展力を 評価し、最小破壊靭性 $J(\Delta a)$ と比較して延性不安定破壊しないことを確認する。

具体的には、各供用状態の荷重から算出されるき裂進展力を示すパラメータJ積 分値Jappと熱時効後のき裂進展抵抗Jmatを用いて評価を行う。

なお、評価点は表1.1で選定されたホットレグ直管、クロスオーバレグRCP側90°エルボ、SG入口50°エルボの3部位とするが、通常運転時に応力が高い部位として選定されたホットレグ直管、SG入口50°エルボは重大事故等時でも応力が高い部位であることを確認している。通常運転時の応力が3番目に高いSG出口40°エルボとの比較を表5.1に示す。

通常運転時 重大事故等時 使用温度 (参考) 評価部位 $[^{\circ}C]$ 応力[MPa] 応力[MPa] ホットレグ直管 322.8 約 193 約201 SG入口50° エルボ 322.8 約 175 約182 SG出口40°エルボ 288.6 約 126 約134

表5.1 重大事故等時における応力比較

(2) き裂進展力 (Japp)

き裂進展力は、評価部位の荷重とき裂長さが板厚の1倍,3倍,5倍の貫通き裂長さを用いて有限要素法により算出する。

評価条件は表5.2の通りで、配管に負荷される荷重は、PLM評価用荷重(自重+ 熱膨張+Ss地震動)とする。

き裂長さが1,3,5倍の時の値は表5.3の通りとなる。

なお、本評価の有限要素法に用いた解析コードは「MARC2005r3」である。当該コードは理論値 (EPRI (Ductile Fracture Handbook NP-6301-D N14-1)の簡易J積分値)とFEMで算出したJ積分値が同等となることを確認している。使用コードの中での裕度は考慮していないが、解析条件に保守性を持たせる (フェライト量約10%の公称応力-ひずみ線図を使用、き裂形状を貫通き裂と想定)ことで評価の保守性を担保している。

ホットレグ直管、クロスオーバレグRCP側90° エルボに対しては、非時効材の応力ーひずみ線図を適用した。SG入口50° エルボに対しては完全時効材の応力ーひずみ線図を適用した。SG入口50° エルボは、エルボで応力大の部位であることから、 J_{app} が過大に評価される可能性があるため評価の保守性を一部見直したものである。

フェライト量、時効程度による公称応力-ひずみ線図の比較を図5.1に示す。このようにフェライト量が多いほど、時効が進むほど、応力-ひずみ線図は上方に移行していくので、約10 %完全時効材の応力-ひずみ線図を評価に適用してもJappの評価に対して保守性を有した条件である。

図5.1 応力-ひずみ線図の比較

表5.2 評価条件 (1/2)

内径 [mm] 外径 [mm]	736.6 882.0 882.0 周 18.5 熱 My My M My My M 4-2515 -98 4						707	_		
+ 経 [mm] き裂形状 1 日重 1 日 日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日	882.0 18.5 ※ 153 ※ My My -98			4			181.	4		
き裂形状 助力[kN] 自重 モーメン 自重 [kN・m] My Mz —308 110 率[MPa] E=174000	18.5 素 153 素 My -98						943.0	0		
圧[MPa] 自重 由力[kN] 自重 -5 モーメン 自重 E-174000 -10 本[MPa] E=174000 -10	18.5 熟 153 熟 My —98	周方向貫通き裂(き裂長さ	: 裂長さ: 1t、	, 3t, 5t	の3種類	頁)				
前方[MPa] 自重 動力[kN] 自重 モーメン 自重 [kN・m] My Mz -308 -10 率[MPa] E=174000	18.5 素 153 素 My My									
軸力[kN] 自重 -5 モーメン 自重 [kN・m] My Mz -308 -10 率[MPa] E=174000	熟 和 My 98						18.	5		
モーメン 自重 [kN・m] My Mz -308 -10	153 熱 My -98	地震	合計	自重	重	熱		田	地震	수計
モーメン 自重 MZ MZ MZ -308 -10 本[MPa] E=174000	数 My 98	5920	8209	2		33		977	2.2	1012
[kN・m] My Mz -10 -308 -10 本[MPa] E=174000 E=17400	My -98	地震	付	ģ	重	漱	,,,	和	地震	が非
-308 -10 率[MPa] E=174000 アソンド ニの3(鍋灶様)	86-	My Mz		My	MZ	My	Mz	My	Mz	
本[MPa] E=174000		448 2699	4311	-26	2-	370	-177	974	385	1484
E=174000										
(学学) 3(学学)										
ハル・コンナードがノ、	ν=0.5(塑性域)									
の対象のですみ で得られた知見を参考にしている。本電共研では2つの試験片について引張り試験を実施し、結果がほぼ同等であったことから1つ の試験片のデータを用いて応力-ひずみ線図を準出した。Japp 値は応力-ひずみ線図の下部の面積に比例するため、強度が低い非時数 材を用いることはより安全側の評価となる。 のする 版本 が か か た た た た た た た た た た た た た	+ 数材の応力-ひずみ こしている。 本電共通 いて応力-ひずみ線図 安全側の評価となる。	線図を用いる。 4 明では2つの試験 を導出した。 Japp	本評価データ 検片について pp 値は応力- 「Ma」	7 は電共研 11 2 31 張 を 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	第 17 次	た を が が が が が が が が が が が が が	果がほぼ に比例 	が ボー ボー ボー ボー ボー ボー ボー ボー ボー ボー	はなる で かっな が が が が が が が が が が が が が が が が が が が	f究(STEP1)」 ことから1つ Eが低い非時効 Gre/Nie 量
公称ひ	公称ひずみ[%]	l J	1							

6	
0	
對 佈多件	
表5.9	

内径[mm] P内径[mm] P内径[mm] PHR [mm] PHR [mm]	187.4 187.4 18.5 18.5 18.5 19.0 19.	18.5 18.5 18.5 My 190 大線図を用いる。本評 外線図を増出した。Jap の評価である。	か3種類) 地震 3342 地震 NZ PMT PMデータは電共研 を片について引張り高 app 値は応力-ひずみ	My 688 (F 1 次冷却材管の 計験を実施し、結 み線図の下部の面	合計 4090 合計 日本 4090
	周方向貫通き裂(き裂) 瀬 My 村)の材料の応力-ひずみ オを参考にしている。本電ータを用いて応力-ひずみ コックを用いて応力-ひずみ ヨいることはより安全側のですみ	#81.4 943.0 長さ:1t、3t、5t (18.5) 18.5 My 190 HW (190) 株研では2つの試験 (190) (1	03種類) 地震 3342 地震 NZ 2950 評価データは電共研 を片について引張り app 値は応力-ひず	My 688 F 「1 次冷却材管の 試験を実施し、結 み線図の下部の面	合計 4090 合計 4090 合計 5083 5083 518 5
	周方向貫通き裂(き裂) 瀬 My 村)の材料の応力-ひずみ を参考にしている。本電ータを用いて応力-ひずみ ヨいることはより安全側のすみ 可ずみ	## 18.5 18.5 18.5 190 19	D3 種類) 地震 MZ MZ PME 2950 専作について引張り 専門について引張り app 値は応力-ひず	My 688 F「1次冷却材管の 試験を実施し、結 み線図の下部の面	合計 4090 合計 合計 合計 合計 日本
	周方向貫通き裂(き裂 数 Ny My (を参考にしている。本電・クを用いて応力-ひずみ用いることはより安全側のするとはより安全側のするとはより安全側のするとはより安全側のするとはより安全側のするとはより安全側のするとはより安全側のするとのするとのでする。	長さ:1t、3t、5t 18.5 My My 190 190 様図を用いる。本 集研では2つの試 線図を導出した。J 評価である。	03種類) 地震 MZ MZ PME 2950 PP価データは電共研 会片について引張り app 値は応力-ひず	My 688 F 「1 次冷却材管の 試験を実施し、結 み線図の下部の面	合計
	Wy Wy Wy Wy Wy Wy Wy Wy	18.5 My 190 190 株研では2つの試験 線図を導出した。J 部価である。 応力	地震 3342 MZ MZ 2950 評価データは電共研 6片について引張り app 値は応力-ひず	My 688 F「1 次冷却材管の 試験を実施し、結 み線図の下部の面	合計 4090 合計 合計 合計 5083 信報 長泉がほぼ同等 14 14 14 15 15 15 15 15
	Wy My My My My My My My	18.5 My 190 190 線図を用いる。本 集研では2つの試験 線図を導出した。J 評価である。 ^{応カ}	地震 3342 MZ 地震 2950 平価データは電共研 6片について引張り app 値は応力-ひず	My 688 688 F「1次冷却材管の 試験を実施し、結 み線図の下部の面	合計 4090 合計 合計
	Wy My My My My My My My	My 190 (線図を用いる。本 供研では2つの試 線図を導出した。J 評価である。 ^{応カ}	地震 MZ MZ 2950 評価データは電共研 6片について引張り app 値は応力-ひず	My 688 F 「1 次冷却材管の 試験を実施し、結 み線図の下部の面	合計 4090 合計 合計 合計 合計 5083 合計 5083 合計 5083 合計 618
	My My 1920	My 190 190 線図を用いる。本 集研では2つの試験 線図を導出した。J 評価である。 ^{応カ}	3342 MZ 2950 評価データは電共研 さ片について引張り app 値は応力-ひず	2 My 688 F 「1 次冷却材管の 試験を実施し、結 み線図の下部の面	4090 合計 5083 5083 5時効劣化に関 5果がほぼ同等 5種に比例する
	My My 1920	My 190 (線図を用いる。本 共研では2つの試 線図を導出した。J 評価である。 ^{応カ}	MZ 2950 評価データは電共研 時について引張り app 値は応力-ひず	My 688 688 F「1次冷却材管の 試験を実施し、結 み線図の下部の面	合計 5083 5083 1 日本
	My 1920 1920 村)の材料の応力-ひずる を参考にしている。本電 ータを用いて応力-ひずみ 目いることはより安全側の	My 190 190 線図を用いる。本 共研では2つの試験 線図を導出した。J 評価である。 ^{応カ}	Mz 2950 平価データは電共研 6片について引張り app 値は応力-ひず	My 688 F 「1 次冷却材管の 試験を実施し、結 み線図の下部の面	5083 時効劣化に関係をはほぼ同等には例する
	1920	190 (線図を用いる。本 は研では2つの試 線図を導出した。J 評価である。 ^{応カ}	2950 平価データは電共研 2片について引張り app 値は応力-ひず	688 	5083 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
	材)の材料の応力-ひず3 を参考にしている。本電 -タを用いて応力-ひずみ 引いることはより安全側の	線図を用いる。本 共研では2つの試験 線図を導出した。J が正である。	平価データは電共研 6片について引張り app 値は応力-ひず	1	0時効劣化に関 5果がほぼ同等 7種に比例する
	材 の材料の応力-ひずみ を参考にしている。本電 -タを用いて応力-ひずみ 引いることはより安全側の	 (((((((((平価データは電共研 6片について引張り app 値は応力-ひず	F 「1 次冷却材管の 試験を実施し、結 み線図の下部の面)時効劣化に関 結果がほぼ同等 17種に比例する
	材)の材料の応力-ひずみを参考にしている。本電ータを用いて応力-ひずみ目いる。本電ーリタを用いて応力-ひずみまいることはより安全側の	線図を用いる。本 共研では2つの試 線図を導出した。) 評価である。 ^{広カ}	平価データは電共研 6片について引張り app 値は応力-ひず。	F 「1 次冷却材管の 試験を実施し、結 み線図の下部の面)時効劣化に関 等果がほぼ同等 1積に比例する
低フェライト量 (約10%、完全時交する研究 (STEPIII)」で得られた知見であったことから1つの試験片のデため、強度が低い低フェライト材を	材 の材料の応力-ひずる を参考にしている。本電 -タを用いて応力-ひずみ 引いることはより安全側の	・ 線図を用いる。 本研では2つの試験 線図を導出した。 り評価である。 ^(た)	平価データは電共研 さ片について引張り app 値は応力-ひず	f [1 次冷却材管の 試験を実施し、結 み線図の下部の面)時効劣化に関 結果がほぼ同等 7積に比例する
する研究 (STEPIII)」で得られた知見であったことから1つの試験片のデため、強度が低い低フェライト材を	を参考にしている。本電 -タを用いて応力-ひずみ 引いることはより安全側の でずみ	共研では2つの試験 線図を導出した。〕 評価である。 ^{応カ}	t片について引張り app 値は応力-ひず。	試験を実施し、結 み線図の下部の面	5果がほぼ同等 1積に比例する
であったことから1つの試験片のデため、強度が低い低フェライト材を	ータを用いて応力-ひずみ 用いることはより安全側の . □ ひずみ	線図を導出した。J p評価である。 応カ	app 値は応力-ひずる	み線図の下部の面	商権に比例する
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	日で、これにはより女生国ではなっている。	赤石			
	2				
\	35	[MPa]			
7		_			
	· -	_	低フェライト材のフェライト量	りフェライト量	
公茶	-	A total A department	TAIRS OF		フェライト
· · · · · · · · · · · · · · · · · · ·		化子成分(浴罩分析) %	1578T) %	-	Cre/Nie 量
Q		C	Mn Cr Ni MO	Cb (Nb) N	
≻ ⊙.		1			
	_				
- C					
[3] 老某公婆公	<u></u> .,				
		_			

*: 荷重は重大事故等時+Ss地震動を考慮

き裂長さ	ホットレグ	クロスオーバレグ	SG入口50°
	直管	RCP側90° エルボ	エルボ
1 t	127	19	263
3 t	645	66	864
5 t	1975	138	1797

表5.3 各き裂長さにおけるJ_{app}値 (kJ/m²)

(3) 材料のき裂進展抵抗 (Jmat)

き裂進展抵抗J_{mat}は、電共研「1次冷却材管等の時効劣化に関する研究(STEPIII) (その2)」で改良された脆化予測モデル(H3Tモデル: Hyperbolic-Time,

Temperature Toughness)を用いて、評価部位のフェライト量を基に完全時効後の飽和値として決定する(算出方法はASME PVP2005-71528参照)。H3Tモデルは、ASTM A800にて計算したフェライト量と破壊靭性値実測データを関連付けた予測式であることから、表1.30ASTM A800によるフェライト量にて計算する。 J_{Ic} 、 J_6 はデータの下限値(-2σ)であり、表5.4の通りである。

なお、NUREG/CR-4513r2でもき裂進展抵抗を算出する式が提唱されているが、NUREG/CR-4513r2手法による J_{mat} を参照しても、(4)に示すき裂安定性評価結果はほぼ変わらない結果となった。

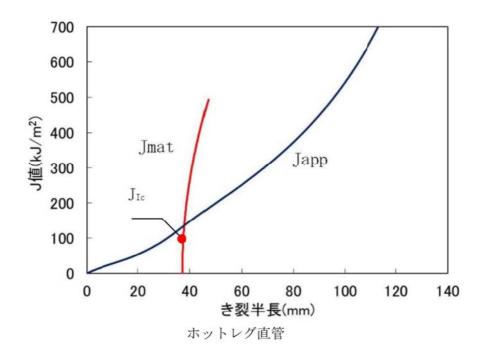

	20.1	- ACAE/ACIENT/L (NJ/III)	
	ホットレグ	クロスオーバレグ	SG入口50°
	直管	RCP側90° エルボ	エルボ
$ m J_{Ic}$	87	68	92
J_6	383	302	404

表5.4 き裂進展抵抗 (k I/m²)

(4) き裂安定性評価結果

(2) 及び(3) で求めたJappとJmatの比較を行った結果を図5.2に示す。

その結果、運転開始後60年時点までの疲労き裂進展長さを考慮した評価用き裂を想定しても、 J_{mat} が J_{app} と交差し、 J_{mat} が J_{app} を上回ること、 J_{mat} と J_{app} の交点においては、 J_{mat} の傾きが J_{app} の傾きを上回ることから、配管は不安定破壊することはなく、健全性評価上問題とならないと判断する。

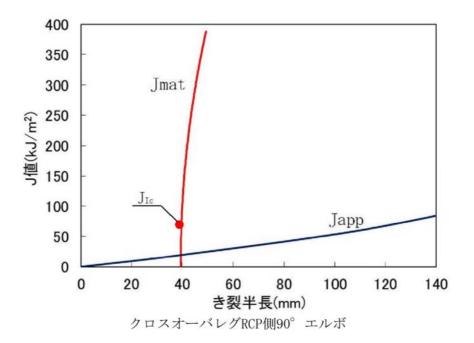


図5.2 き裂安定性評価線図 (1/2)

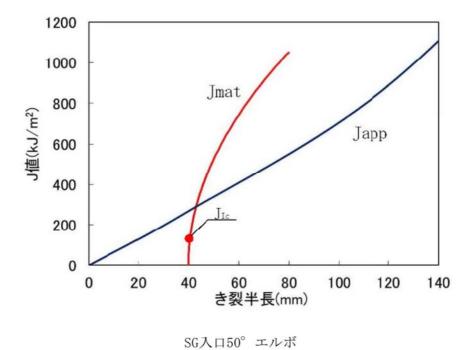


図5.2 き裂安定性評価線図 (2/2)

美浜3号炉-耐震-1

タイトル

浸水防護施設(津波防護施設、浸水防止設備、津波監視設備)のリストアップ及び耐震安全性評価の評価対象設備の、具体的な抽出根拠、抽出プロセス及び評価内容について。

説明

美浜3号の「浸水防護施設」のうち、耐震安全性評価対象とした設備について、経年劣化事象の抽出や耐震安全性評価の要否判断などのプロセスを示す。

1. 浸水防護施設について

耐震安全性評価対象とした浸水防護施設(津波防護施設、浸水防止設備、津波監視設備)については以下のとおり。

(1) 津波防護施設: · 防潮堤… a

屋外排水路逆流防止設備…b

(2) 浸水防止設備:・取水構造物(海水ポンプ室浸水防止蓋)… c

海水ポンプエリア止水壁 … d

(3) 津波監視設備:・津波監視カメラ …e

潮位計 …f

- 2. 想定される劣化事象**
 - (1) コンクリート構造物 (対象 a)
 - a. 高経年化対策上着目すべき経年劣化事象 (○事象)
 - · 中性化 ···①
 - 塩分浸透 …②
 - b. 高経年化対策上着目すべき経年劣化事象ではない事象 (△▲事象)
 - アルカリ骨材反応 …③
 - 凍結融解 …4
 - ·耐火能力低下 …⑤
 - (2) 鉄骨構造物(対象a,b,c,d)
 - a. 高経年化対策上着目すべき経年劣化事象 (○事象) 該当なし
 - b. 高経年化対策上着目すべき経年劣化事象ではない事象 (△▲事象)
 - 腐食
-
- ・風などによる疲労 …⑦
- (3) 計測制御設備(対象e,f)
 - a. 高経年化対策上着日すべき経年劣化事象 (○事象) 該当なし
- b. 高経年化対策上着目すべき経年劣化事象ではない事象 (△▲事象)
 - ・樹脂の劣化(ケミカルアンカー)…⑧
 - ・腐食(支持構造物) …⑨
 - ・腐食(ケミカルアンカー) …⑩
 - ※: 絶縁低下(絶縁体の水トリー劣化による絶縁低下を含む)、特性変化及び 導通不良については、耐震性に影響を及ぼすパラメータの変化とは無関係で あるため記載は省略する。

- 3. 耐震安全上考慮する必要のある経年劣化事象の抽出 「2. 想定される劣化事象」で整理した経年劣化事象①~⑩について、 耐震安全上考慮する必要のある経年劣化事象の有無について検討したプ ロセスを下表に整理した。
 - 表1 耐震安全上考慮する必要のある経年劣化事象の有無検討プロセス

188	州評価	で想定される経年劣化事象	ステップ1		ステップセ		ステップ 3	
高级年化対策上				i	高延年化対策上番目すべき 経年劣化事象であるが、現 在発生しておらず、今後も 発生の可能性がないもの、 または小さいもの	×	ж	
着目すべき 経年劣化事業	下肥	1)~2)を除く経年劣化事象	0		現在発生しているか、また		照動応答特性上または構造・強 度上「軽振もしくは無視」でき ない事象	0
					は特実にわたって起こるこ とが否定できないもの	0	振動応答特性上または構造・独 度上「軽微もしくは無視」でき る事象	•
		想定した劣化様向と実際の劣化様向の幸難		i	日常男化管理事業である が、規在発生しておらず、 今後も発生の可能性がない もの、または小さいもの	-	-	
高福年化計策上	1) Δ	が考えがたい延年劣化事業であって、想定 した劣化類内等に基づき渡切な保全活動を 行っているもの	0		現在発生しているか。また	0	服動応等特性上または構造・値 度上「軽微もしくは解説」でき ない事象	
着日すべき 経年劣化事業 ではない事業		(日常芳化管理事象)		ı	は辞典にわたって起こるこ とが否定できないもの		摂動応等特性上または構造・性 度上「軽性もしくは解説」でき る事象	
1000	2)	侵在までの運転延載や使用条件から得られ た材が拡軟デッとの比較等により、今後 も経年方化の連携が考えられない。また 適関傾向が極めて小さいと考えられる延年 劣化等象 (日常名化管理事業以外)	-		34578		-	

- 実践単化対策上着日平へ各起来が存棄ないたい・事業(日本実化管理事象)
 ▲ 実践極化対策上着日平心各級手化事業ではない・事業(日本実化管理事象)
 ▲ 実践極化対策上着日平心各級手が事業(日本実化事業(日本実化事業)
 評価事業として抽出
 実務を保険しませい・表報・大多様ではない・事業(日本実化管理事象以外であるもの。あるいは日東実化管理事業であるが、規定発生しておらず。今後も発生の可能性がないもからないがあったして評価対象から除外
 ※ 実践極化対策上着日平心を経帯実化事業であるが、規定発生しておらず、今後も発生の可能性がないもの。または小さいものとして評価対象から除外
 ② 主教教で事業とまたは実施・実施と「報告しては無関」できる事象として評価対象から除外
 ② 主教者である様年男化事業と「報告しては出版」できる事象として評価対象から除外

以上より、美浜3号の「浸水防護施設」については、◎となる対象と してケミカルアンカーの腐食を考慮した耐震安全性評価を実施した。

以上

関西電力株式会社 事象:耐震(配管)

美浜3号炉-耐震-16rev1

タイトル

母管の内面からの腐食(流れ加速型腐食)に対する耐震安全性評価について

説明

1. 評価対象ラインの抽出について

美浜3号炉の劣化状況評価における「母管の内面からの腐食(流れ加速型腐食)」に対する耐震安全性評価は、発電用原子力設備規格加圧水型原子力発電所配管減肉管理に関する技術規格(以下「技術規格」という。)等を踏まえて策定した当社の管理指針「2次系配管肉厚の管理指針」に規定する検査対象系統を基に、評価対象ラインを選定し、耐震安全性評価を実施している。選定フローを添付1に示す。

2. 評価対象ライン数

その結果、評価対象として抽出され評価を行ったライン数は、系統分類毎にそれぞれ以下の通り。

主蒸気系統配管: 7ライン

低温再熱蒸気系統配管:1ライン

第2抽気系統配管:1ライン

第3抽気系統配管:1ライン

第4抽気系統配管:3ライン

主給水系統配管:11ライン

復水系統配管: 7ライン

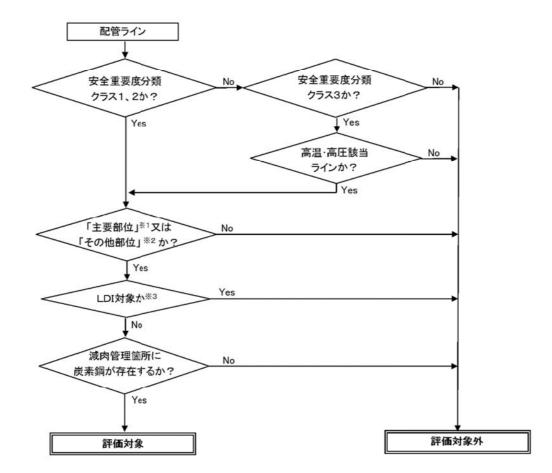
ドレン系統配管:26ライン

補助蒸気系統配管:2ライン

グランド蒸気系統配管:1ライン

蒸気発生器ブローダウン系統配管:3ライン

3. 評価結果


各評価仕様〔各評価用地震、想定減肉(必要最小肉厚or実測データ)、解析手法(梁モデル解析orFEM解析)〕とともに、各ラインの評価結果を添付2に示す。

4. 評価モデル

評価対象ラインのうち、劣化状況評価書に厳しいラインとして代表で 記載した応力比の、対象箇所を含む解析モデル図を添付3に示す。

また、FEM解析を行ったラインの例として、主蒸気系統配管のうち 湿分分離器加熱蒸気管のFEM解析について添付4に示す。

以上

配管内面からの腐食(流れ加速型腐食)評価対象ラインの抽出フロー

※1:当社社内指針「2次系配管肉厚の管理指針」において、減肉が発生する可能性があるとし 点検対象として選定している部位(「発電用原子力設備規格加圧水型原子力発電所配管減 肉管理に関する技術規格」の流れ加速型腐食(FAC)による試験対象系統、液滴衝撃エ ロージョン(LDI)による試験対象系統の試験対象箇所にあたる部位

※2:当社社内指針「2次系配管肉厚の管理指針」において、2次系冷却水が常時流れる系統の うち主要部位に該当しない偏流発生部位

※3:液滴衝撃エロージョン (LDI) については、減肉が発生したとしても局所的であり、応答 特性・強度に影響がないことから対象外とし、流れ加速型腐食 (FAC) のみを耐震評価 対象としているもの

美浜3号機 PLM40耐震評価 流れ加速型腐食に対する配管評価結果一覧

			P			3	全箇所tsr	モデル				
系統分類	耐震	配管名称	章平4	西用地震	粱	モデル評価			FEM評価			
系統分類	クラス	ac a - 0 - 77		W/11-0-BC	応力値/ 許容応力	応力比	評価	応力値/ 許容応力	応力比	評価		
	С	湿分分離器加熱蒸気管		С	i	1.08	×		0.86	0		
			Sd	1次	l I	0.81	0		723			
	s	A-主蒸気配管 (DV内)	Su	1次+2次	1	0.45	0					
	3	A 工然XILE (UV)	Ss ^{※1}	1次		0.61	0		_			
			Ss	1次+2次		0.99	0					
			6.1	1次	ĺ	0.77	0					
	s	B-主蒸気配管 (CV内)	Sd	1次+2次	i	0.41	0		_			
	8	B-主然気配管(UVM)	Ss ^{**2}	1次		0.57	0					
			Ssma	1次+2次		0.82	0	1				
				1次	i	0.79	0					
		o +#===# (out)	Sd	1次+2次		0.41	0	1				
	S	C-主蒸気配管 (CV内)	Ss ^{**2}	1次	ı	0.58	0					
			Ss	1次+2次	ſ	0.84	0		-			
主蒸気糸統			0.1	1次		0.95以下	0					
		. + # = = # (ov H)	Sd	1次+2次		0.70以下	0					
	S	A-主蒸気配管 (CV外)	Ss ^{**3}	1次	ı	0.48	0					
l .			Ssmo	1次+2次	ĺ	0.70	0	1	-			
				1次		0.85	0					
			Sd	1次+2次		0.57	0	1	-			
	s	B-主蒸気配管 (CV外)		1次		0.54	0					
		ALL SHOOM AND MAD SHOULD CARREST HORSELF	Ss ^{※3}	1次+2次		1.23	×		-			
			2000	1次+2次	UF:0	0.134	0					
				1次		0.79	0					
			Sd	1次+2次	1	0.48	0	1	-			
	s	C-主蒸気配管 (CV外)		1次	ĺ	0.52	0					
		04-24-21-21-21-21-21-21-21-21-21-21-21-21-21-	Ss ^{**3}	1次+2次	ئـ ــ ــا	1.03	×	1	-			
			1000	1次+2次	UF:0	0.012	0					

評価書に記載した系統毎の代表設備及びその評価結果

※1:Ss-3による評価

※2:Ss-6による評価

※3:全波包絡FRSを用いた評価

枠囲みの範囲は機密に係る事項ですので公開することはできません。

美浜3号機 PLM40耐震評価 流れ加速型腐食に対する配管評価結果一覧

							全箇所tsr	モデル		
有2抽気系統 有3抽気系統 有4抽気系統	耐震	配管名称	評価	西用地震	梁	モデル評価			FEM評価	
	クラス				応力値/ 許容応力	応力比	評価	応力値/ 許容応力	応力比	評価
2.温再熟蒸気系統 5.2抽気系統 5.3抽気系統	С	低温再熟蒸気配管(高圧排気管)		С		0.25	0		-	
第2抽気系統	С	第2抽気管		С		0.03	0		=	
第3抽気系統	С	第3抽気管		С		0.55	0		m	
	С	第4抽気管(A)		С		0.33	0		-	
第4抽気系統	С	第4抽気管(B)		С		0.37	0		-	
	С	第4抽気管(C)		С		0.64	0		Ē	
	С	給水ブースタポンプ吸込管(A)		С		1.08	×		0.59	0
氏温再熱蒸気系統 第2抽気系統 第3抽気系統	С	給水ブースタポンプ吸込管(B)		С	1	0.99	0	۱ – – ۱	-	
	С	給水ブースタポンプ吸込管(C)		С		0.78	0		=	
	С	主給水ポンプ~第6高圧給水加熱器		С		0.31	0		=	
	С	第6高圧給水加熱器~神船取合い		С		0.44	0			
			Sd	1次		0.57	0		_	
	s	A-主給水配管 (CV内)		1次+2次	1	0.34	0	123		
			Ss ^{∰1}	1次+2次	1	0.75	0		-	
			Sd	1次 1次+2次		0.71	0	-		
	S	B-主給水配管 (CV内)	Ss ^{∰2}	1次		0.72	0			
			Ssm	1次+2次		0.96	0		-	
LA 1. TA			Sd	1次		0.69	0		22	
E給水糸統				1次+2次	1	0.47	0			
	S	C-主給水配管 (CV内)	w.	1次	ì	0.74	0	-		
			Ss ^{#1}	1次+2次	UF:0.	1.01	×		-	
			+-	1次+2次	UF . 0.	0.72	0			
			Sd	1次 1次+2次		0.72	0	1	-	
	S	A一主給水配管 (CV外)	- 27230.11	1次*2次		0.43	0			
			Ss ^{∰4}	1次+2次	Ì	0.85	0	1	-	
				1次		0.61	0			
			Sd	1次+2次		0.58	0		_	
	s	B-主給水配管 (CV外)		1次		0.50	0			
	3000	Anno in transcribe and the federal in the federal federal	Ss ^{※3}			1.30	×	1	п	
				1次+2次	UF:0.		0	1		
				1次		0.86	0		03	
	2	a that same (a)(H)	Sd	1次+2次		0.49	0		-	
	S	C一主給水配管 (CV外)	Ss ^{∰3}	1次	1	0.80	0		_	
5.4抽気系統			Ss ^{m3}	1次+2次	AA	0.98	0		-	

評価書に記載した系統毎の代表設備及びその評価結果

※1:Ss-3を用いた評価 ※2:Ss-4を用いた評価

※3:Ss-23を用いた評価

※4:全波包絡FRSを用いた評価

枠囲みの範囲は機密に係る事項ですので公開することはできません。 ▮

美浜3号機 PLM40耐震評価 流れ加速型腐食に対する配管評価結果一覧

						全箇所	tsrモデル		
系統分類	耐震クラス	配管名称	評価用 地震	梁	モデル評価			FEM評価	
	992	(100m) 12 (100m)	地展	応力値/ 許容応力	応力比	評価	応力値/ 許容応力	応力比	評価
	С	復水ポンプ〜グラコン〜復水ブースタポンプ〜第1低 圧給水加熱器	С		0.53	0		-	
	С	第1低圧給水加熱器~第2低圧給水加熱器(A)	С		0.28	0		-	
	С	第1低圧給水加熱器~第2低圧給水加熱器(B)	С		0.28	0		-	
復水系統	С	第1低圧給水加熱器~第2低圧給水加熱器(C)	С	i	0.28	0		-	
	С	第2低圧給水加熱器~第3低圧給水加熱器(A)	С	l i	0.42	0		-	
	С	第2低圧給水加熱器~第3低圧給水加熱器(B)	С	ļ i	0.75	0		-	
	С	第2低圧給水加熱器~第3低圧給水加熱器(C)	С		0.87	0	FEM評価 応力値/ 許容応力		
	С	第6高圧給水加熱器ドレン管(A)(常用)	С		1.08	x		0.76	0
	С	第6高圧給水加熱器ドレン管(B)(常用)	С	l j	0.81	0		-	
	С	第4低圧給水加熱器ドレン管(A)	С	ļi	0.44	0		-	
	С	第4低圧給水加熱器ドレン管(B)	С	. !	0.50	0		-	
12 > 74	С	第4低圧給水加熱器ドレン管(C)	С		0.44	0		-	
ドレン系統	С	第3低圧給水加熱器ドレン管(A)(常用)	С		0.66	0		-	
	С	第3低圧給水加熱器ドレン管(B)(常用)	С	ı i	0.69	0		-	
	С	第3低圧給水加熱器ドレン管(C)(常用)	С	ļi	0.97	0		-	
	С	低圧給水加熱器ドレンポンプ吐出管(A)	С		0.53	0		-	
	С	低圧給水加熱器ドレンポンプ吐出管(B)	С		0.51	0		-	

評価書に記載した系統毎の代表設備及びその評価結果

枠囲みの範囲は機密に係る事項ですので公開することはできません。 ▮

美浜3号機 PLM40耐震評価 流れ加速型腐食に対する配管評価結果一覧

						全箇所	tsrモデル		
系統分類	耐震クラス	配管名称	評価用 地震	梁	モデル評価			FEM評価	
	952		地展	応力値/ 許容応力	応力比	評価	応力値/ 許容応力	応力比	評価
	С	低圧給水加熱器ドレンポンプ吐出管(C)	С		0.39	0		-	
	С	湿分分離加熱器ドレン管(IA)	С		0.40	O		-	
	С	湿分分離加熱器ドレン管(2A)	С		0.39	0		-	
	С	湿分分離加熱器ドレン管(3A)	С	i	0.54	О		-	
	С	湿分分離加熱器ドレン管(1B)	С	i	0.38	О		-	
	С	湿分分離加熱器ドレン管(2B)	С	ı	0.41	О		-	
	С	湿分分離加熱器ドレン管(3B)	С		0.46	С		-	
l*i ゝ ヹ 4+	С	湿分分離加熱器ドレンタンクドレン管(A, B) (常用)	С		0.91	0		-	
トレン糸杭	С	湿分分離器ドレン管(IA)	С		0.26	O		-	
	С	湿分分離器ドレン管(2A)	С		0.23	О		-	
	С	湿分分離器ドレン管(3A)	С	i	0.28	O		-	
	С	湿分分離器ドレン管(IB)	С	i	0.38	0		-	
	С	湿分分離器ドレン管(2B)	С	ı	0.69	О		-	
	С	湿分分離器ドレン管(3B)	С	l	0.53	O		-	
	С	湿分分離器ドレンポンプ吸込管(常用)	С	ļ	0.99	0	L	-	
	С	湿分分離器ドレンポンプ吐出管	С		1.22	×		0.49	0

評価書に記載した系統毎の代表設備及びその評価結果

枠囲みの範囲は機密に係る事項ですので公開することはできません。

美浜3号機 PLM40耐震評価 流れ加速型腐食に対する配管評価結果一覧

						全	箇所tsrモデ	ıı		
系統分類	耐震	配管名称	評価	i 用地震	梁	モデル評価			FEM評価	
	クラス				応力値/ 許容応力	応力比	評価	応力値/ 許容応力	応力比	評価
グランド蒸気系統	С	グランド蒸気管		С		0.86	0		-	
補助蒸気系統	С	スチームコンバータ加熱蒸気管 第6抽気ライン(第6抽気管~スチームコンバータ)		С		0.77	0		-	
	С	スチームコンバータドレン管		С		0.43	0		-	
				1次		0.48以下	0		6565	
蒸気発生器 ブローダウン	s	AループSGBD配管 PEN#279CV外	Sd	1次+2次		0.97以下	0			
	5	CVBD内	Ss ^{**3}	1次		0.24	0			
			Ss	1次+2次		0.97	0		_	
			Sd	1次		0.67以下	0		_	
	S ^{**2}	AループSGBD配管 PEN#279CV外	30	1次+2次		0.27以下	0	_		
	5	CVBD外	Ss ^{**3}	1次		0.35	0	-		
			os	1次+2次		0.27	0			
			Sd	1次		0.43	0		_	
	s	BループSGBD配管 PEN#233CV外	Su	1次+2次	2	0.43	0	_		
		CVBD内	Ss ^{**3}	1次		0.26	0		** <u>-</u>	
			Ss	1次+2次		0.89	0			
			Sd	1次	/	0.74	0			
系統※1.3		BループSGBD配管	30	1次+2次		0.61	0			
	S ^{※2}	PEN#233CV外		1次		0.75	0			
		CVBD外	Ss ^{**3}	1次+2次	L	1.35	×		-	
				1次+2次	UF:0.0	90	0			
		CONTROL SHOPE VIOLEN COOLERS	Sd	1次		0.49以下	0		_	
	s	CループSGBD配管 PEN#230CV外		1次+2次		0.87以下	0			
	"	CVBD内	Ss ^{**3}	1次		0.25	0]	_	
			38	1次+2次		0.87	0			
		201	Sd	1次		0.60以下	0		_	
	S ^{**2}	CループSGBD配管 PEN#230CV外	Su	1次+2次		0.34以下	0			
	5	CVBD外	Ss ^{**3}	1次	l l	0.3	0			
			SS	1次+2次	l i	0.34	0		81 7 3	

評価書に記載した系統毎の代表設備及びその評価結果

枠囲みの範囲は機密に係る事項ですので公開することはできません。 ▮

^{※1:} 断続運転評価では、各系統について、CVBD内(Sクラス)

およびCVBD外(Cクラス)の評価を行っている。

^{※2:} Cクラス範囲については、保守的にSクラスと同等の評価を行っている。

^{※3:}全波包絡FRSを用いた評価

添付3 (1/2	21)
----------	----	---

主蒸気系統配管(湿分分離器加熱蒸気管)

11111

I

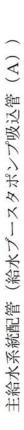
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1
•																				٠
ı																				ı
1																				I
:																				ı
•																				:
ı																				ı
																				ı
:																				
ı																				ı
ı																				ı
																				ı
•																				:
ı																				ı
1																				ı
																				ı
•																				:
ı																				ı
1																				ı
:																				
ı																				•
ı																				ı
																				ı
•																				:
ı																				ı
1																				
ī																				ı
•																				:
ı																				ı
1																				I
:																				
ı																				•
ı																				ı
																				ı
:																				
ı																				•
ı																				
ı																				ı
:																				:
I																				ı
ı																				I
i																				ı
ı																				:
ı																				ı
	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	J

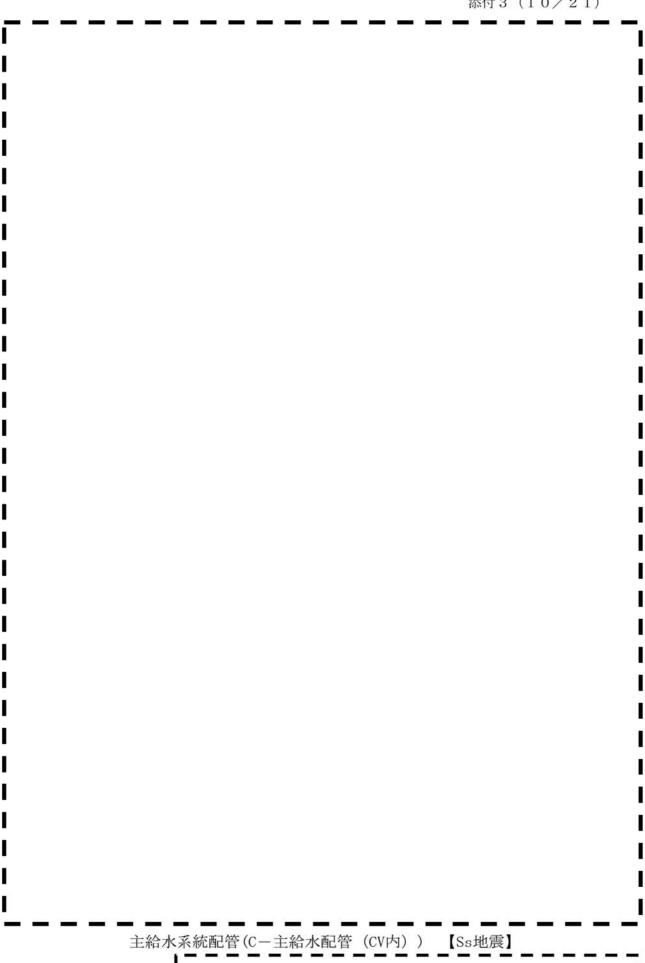
主蒸気系統配管(A-主蒸気配管(CV内)) 【Ss地震】

添付3	(3/2)	1)

主蒸気系統配管(A-主蒸気配管 (CV外)) 【Sd地震】

■枠囲みの範囲は機密に係る事項ですので公開することはできません。


添作	+3	(4/	2	1
1.1.1		1 - /	_	- /


【枠囲みの範囲は機密に係る事項ですので公開することはできません。

【枠囲みの範囲は機密に係る事項ですので公開することはできません。

【枠囲みの範囲は機密に係る事項ですので公開することはできません。

添付3	(9/21)
1/1/1/1	19//

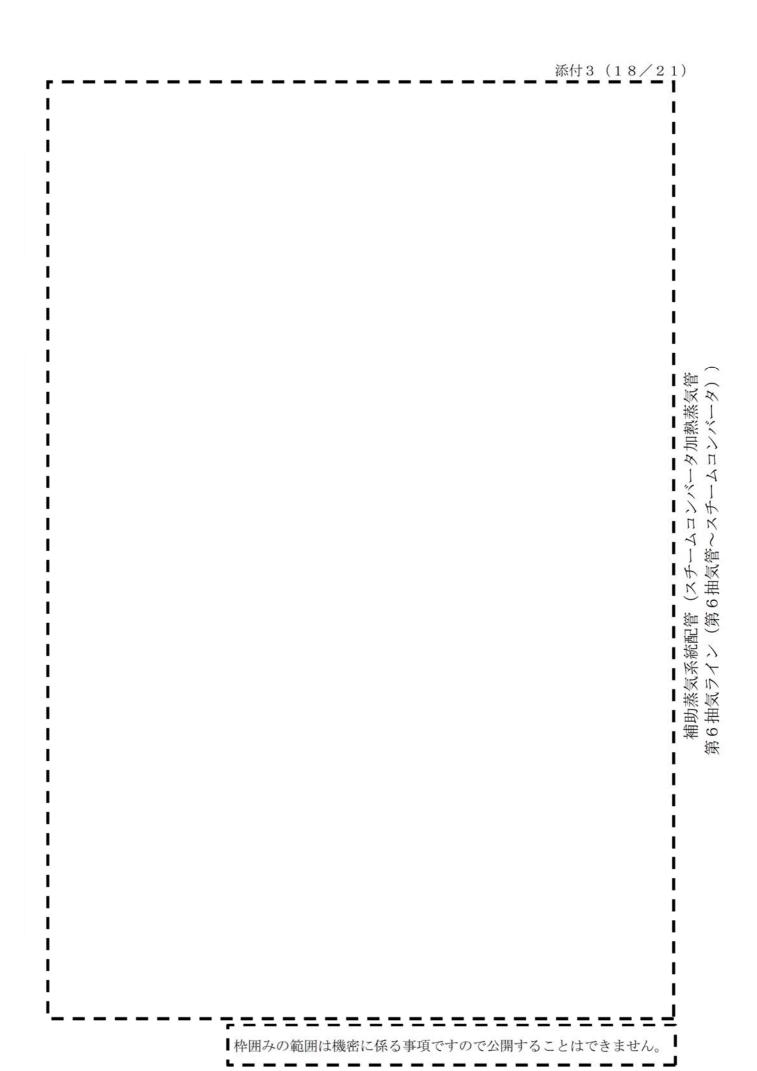
	13.110 (11) 21)
	,
•	
1	
1	
•	
l .	
	•
•	
_	
•	
•	
1	
-	
	•
•	
1	
1	
	_
•	
I	
1	
1	
I .	
•	
•	
1	
_	_
•	
	ı
•	
•	
	•
I .	
•	
1	
_	
•	
1	
I	
•	
	•
1	ı
•	
1	
1	
-	
•	
I	ı
I	
1	
1	
	•
	ı
•	
1	
1	
	_
•	
1	1
'	'

主給水系統配管(B-主給水配管(CV外)) 【Sd地震】

	添付3 (12/21)
	ļ
	, ,
	Į.
	,
	ļ
i I	,
	l
I	ı I
] 	!
i	i
 	!
	i
	ļ
	i
	l I
	i
	i
	i
I	J

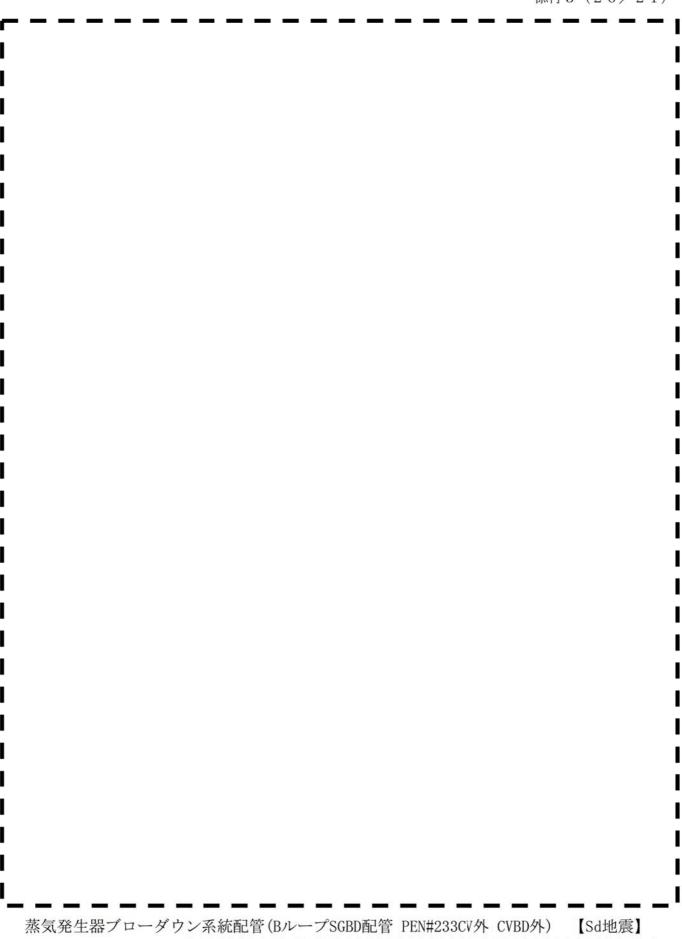
主給水系統配管(B-主給水配管(CV外)) 【Ss地震】 枠囲みの範囲は機密に係る事項ですので公開することはできません。

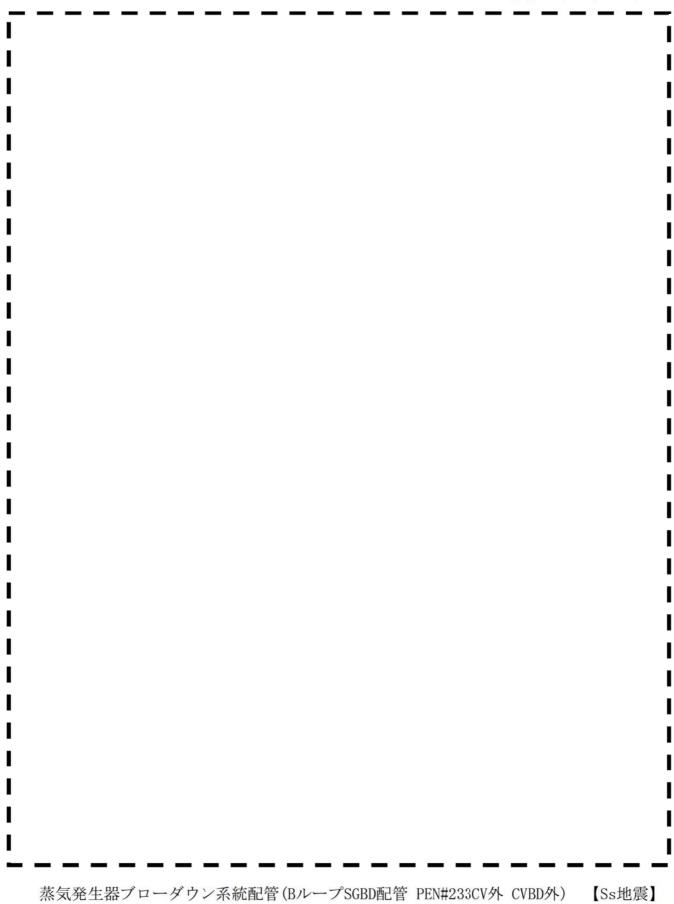
添付3	(13/2)	1
13/4/11 0	(10/2	1


【Sd地震】
(CV外))
7一主給水配管
7.
主給水系統配管

		 添付3 (14/21)	
	 	 !	
Ī		i	
I		i	
I		Ī	
!		1	
!		I	
;		!	
i			
Ī		: :	
I		i	
I		ĺ	
!		L	影
!		1 3	Ss地震
;		Ļ	Š
i		l L	_
I			7
I		Ī	CV5
1		I Ì	· înn
!		I 🕺	配
1		1 -	以大
i			田彩
i			0
I		1 \$	(県
I		I -	元酉已
!		1 1	米
!		I 5	京水
<u> </u>		I S	田
i			
Ì		i	
I		i	
I		i	
!		1	
!		1	
;		<u> </u>	
i		!	
i		1	
	 	 	

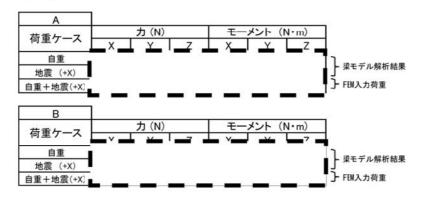
	添付3 (15/21)
!	i
;	Î.
Ì	!
!	;
!	i
i	1
Ì	!
!	;
<u> </u>	i ~
i	I $\widehat{\mathfrak{G}}$
Ì	■
!	整
<u> </u>	! ₹
i	
İ	
!	■ 結
!	·
;	
i	1 年
1	41 84 14
!	
;	
i	• · · · · · · · · · · · · · · · · · · ·
1	- LE
!	· 集
;	
i	**************************************
I	i i
!	i
;	i
i	I
1	!
!	;
 	i


	添付3 (16/21)	
1	!	
Î.	i	
!	i	
-	!	
i	-	
1	i	
!	I	
;	!	
i	:	
1	i	$\overline{}$
	1	(H
i	1	(常用)
1	: ■:	
!		(A)
;	Ī	受
i	Ŷ	3
<u>!</u>	Î	6 高圧給水加熱器ドレン管
	I	川熱
i		計大
1	î	圧約
!	1	6 画
;	1	(第)
i	1	河
1	î	充配
	1	米彩
;		ドレン系統配管
i	· · · · · · · · · · · · · · · · · · ·	<u>"</u>
	i	
	!	
i	:	
1	i	
1	Ì	
	1	
'		

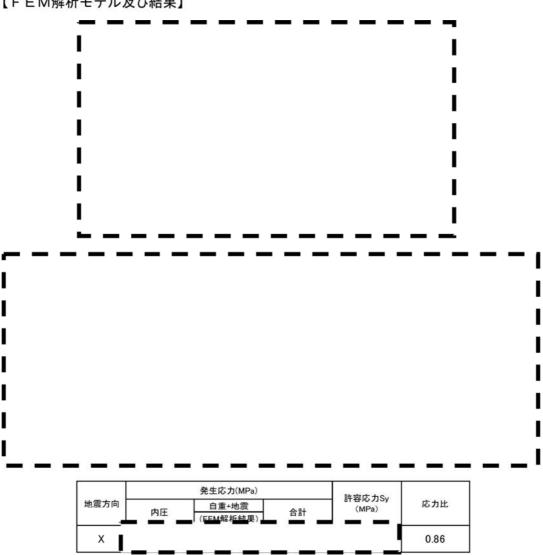

	添付3 (17/21)
	Î
	!
i	- :
i	i
I	i
1	1
	1
	!
i I	:
Ì	i
I	i
1	1
	ا سوائد
i i	
Ì	2
	Ĭ,
1	
	□ 河
1 1	- 終
i	
1	擬
I	i 3
<u>I</u>	Ĭ,
	1
	!
i	- :
1	i
1	i
<u> </u>	1
] 	l
· 	l
i	l I
I	i
1	i
<u> </u>	1
1	

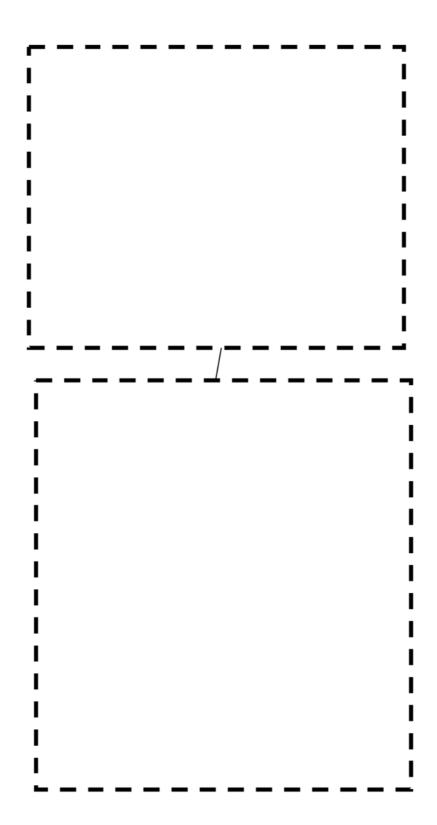
Sd地震
CVBD内)
PEN#279CV外
ループSGBD配管
ウン系統配管(A
蒸気発生器ブローダ

【枠囲みの範囲は機密に係る事項ですので公開することはできません。 【


主蒸気系統配管(湿分分離器加熱蒸気管)に対するFEM解析について

主蒸気系統配管(湿分分離器加熱蒸気管)のFEM解析では、一次要素のソリッドモデルにて解析を行い、ミーゼス応力を算出している。


固定端は偏平を許容しない真円固定としているが、真円固定条件が評価部 (3次元梁モデル解析で応力評価上厳しい結果となった部位) に影響を与えない範囲を考慮して、評価部から2D程度 (評価する配管の外径の2倍程度) の位置を固定端としている。


また、板厚方向のメッシュ数を3層としているが、これは曲げにより偏平を生じる解析においてもCクラス配管の耐震評価で対象とする1次応力を適切に評価できることを過去の解析や試解析等により確認しているため、採用したものである。

【FEM入力荷重】

【FEM解析モデル及び結果】

関西電力株式会社

事象:耐震(機械設備)

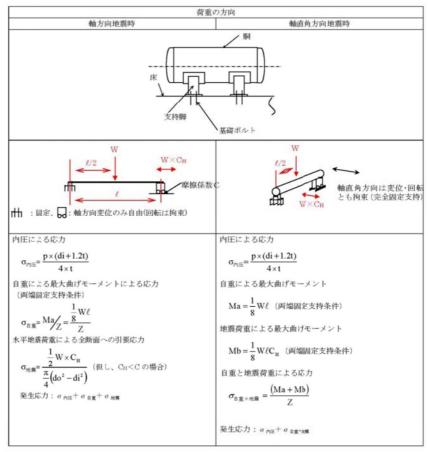
美浜3号炉-耐震-25rev3

タイトル

廃液蒸発装置蒸発器胴板の応力腐食割れに対する評価の具体的内容(評価 仕様、解析モデル、入力(荷重)条件、評価結果を含む)について。

説明

廃液蒸発装置蒸発器胴板の地震時発生応力が最も大きくなる箇所に、半 周の貫通き裂を想定し、地震時の発生応力が安定限界応力を上回らないこ とを確認する。


1. 評価手順

(1) 地震力

廃液蒸発装置は、耐震クラスBであるため、設置エリアに対応する水平静的震度 と、1/2Sdの水平動的震度 (Sd床応答曲線のピーク値の1/2:添付1参照)の大きい方を用いる。

(2)発生応力の算出

下記のとおり、地震時の発生応力(地震、内圧、自重)を算出する。

※応力の算出においては、梁モデルを用いた場合により保守的な大きな応力の値が算出できることから、梁モデルを用いた評価を実施している。

※評価機器において、重心位置に偏りがある場合でも、材料力学の考えより重心位置をタンクの中心で評価したほうが保守的な評価となることから、評価位置を中心としている。

(3) 耐震安全性評価

「正味応力概念」に基づき、半周の貫通き裂を考慮した場合のき裂安定限界応力を算出*し、(2)で算出した発生応力がこれを上回らないことを確認する。なお、添付2に示すとおり蒸発器胴板の溶接線と、き裂想定部位は異なることから、Z係数を乗じた弾塑性破壊力学評価は実施していない。

※:原子力発電所配管破損防護設計技術指針 (JEAG 4613-1998)) に基づく評価方法を用いた。

2. 評価結果

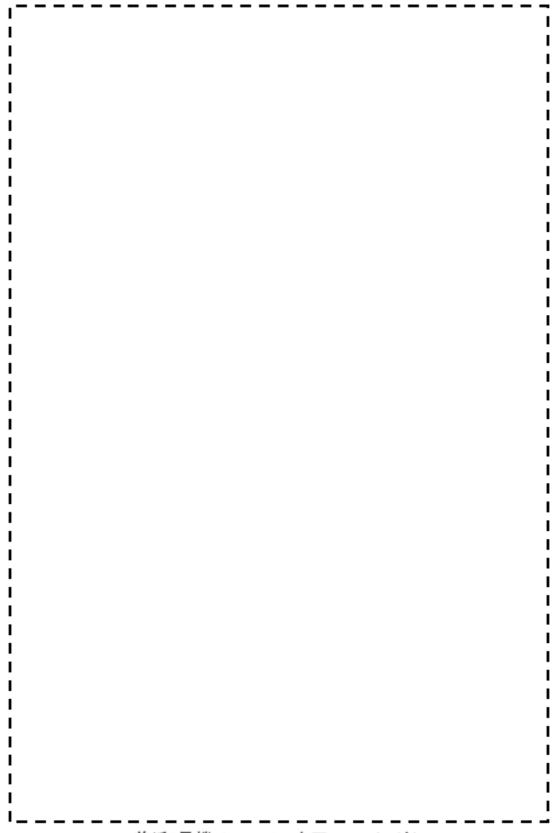
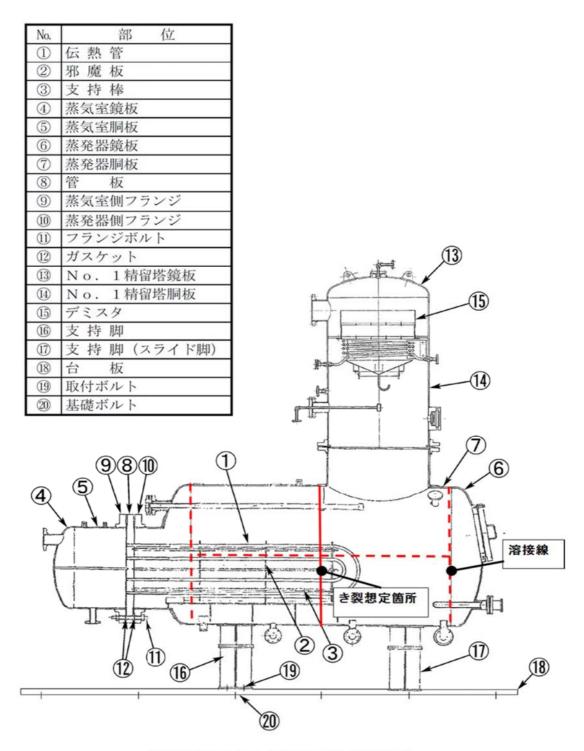

評価結果は表1のとおりであり、応力腐食割れに対する耐震安全性に 問題はない。

表1 応力腐食割れに対する耐震安全性評価結果

-	想定き裂	Ī	耐震安全性評価	
	き裂角度 (°)	地震時応力 (MPa)	き裂安定 限界応力 (MPa)	応力比
軸方向地震	100			0. 15
軸直角方向地震	180		Ī	0.17


【評価に用いたデータ一覧】

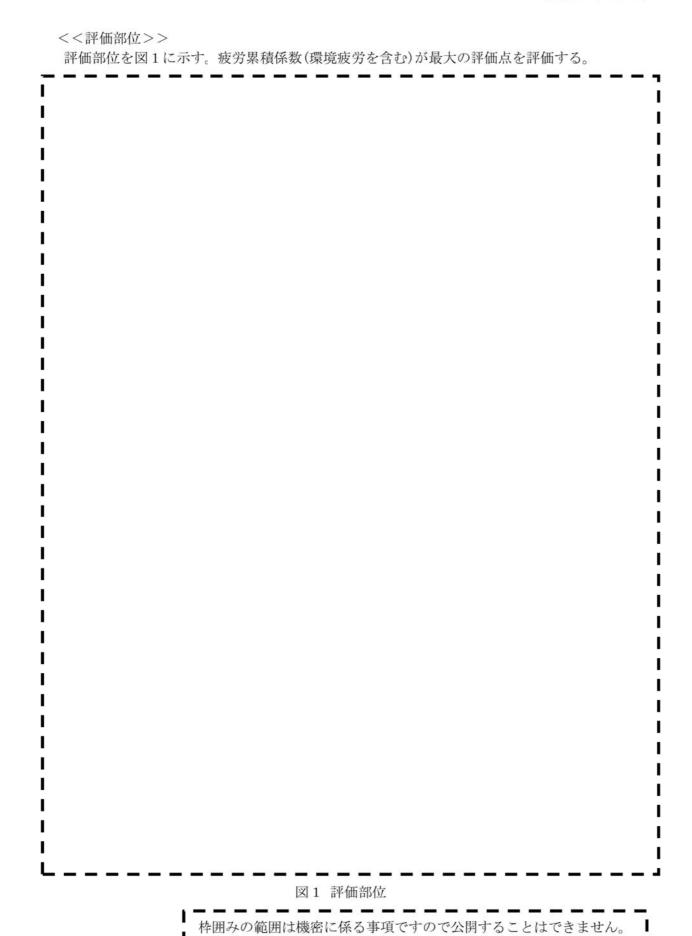
項目	単位	記号	数式	インプットデータまたは結果
板厚	mm	t	蒸発器組立図より	575.574
き製角度		2θ		ì
胴外径	mm	D _o	D _i +t×2	•
胴内径	mm	Di	蒸発器組立図より	1
内圧	MPa	Р	蒸発器組立図より(最高使用圧力:1kg/cm²)	ī
改 蒸発器重量	kg	W _o	蒸発器既工認より (蒸発器+#1精留塔+#2精留塔, 満水時重量)	
設計降伏点	MPa	Sy	SUS316L、150°C JSME Part5 表8より	:
4 設計引張強さ	MPa	Su	SUS316L、150°C JSME Part5 表9より	1
設計地震力	_	Сн	PLM耐震条件(動的地震力)より: 原子炉補助建屋 FRS(質点番号:7)のピーク 1/2の値	Ì
外半径	mm	R _o	D ₀ /2	J
内半径	mm	· R _i	D ₁ /2	
平均半径	mm	R _m	(外半径+内半径)/2	1
支持脚中心間距離	mm	L	蒸発器組立図より)
流動応力(許容応力)	MPa	S _f	(S _y +S _u)/2	j
膜応力	MPa	P _m	$P \times D_o / (4 \times t)$	1
キョン き裂半角度	•	θ]
-	rad	α	θ / 180 × π	i
Б	rad	β	$((\pi - \alpha) - (P_m/S_f) \times \pi)/2$	1
破壊時曲げ応力	MPa	P _b '	$2 \times S_f \times (2\sin\beta - \sin\alpha) / \pi$	1
安定限界応力	MPa	P _f	P _m +P _b '	ì
th 内圧による応力	MPa	$\sigma_{ m ME}$	$P \times (D_i + 1.2t) / (4 \times t)$	1
自重による曲げモーメントによる応力	MPa	の自動	(W ₀ × 9.80665 × L/8)/Z	1
水平地震力による応力	MPa	の治療	$(W_0 \times 9.80665 \times C_H/2) / (\pi / 4 \times (D_0^2 - D_i^2))$	Ì
発生応力	MPa	σ_{th}	σ _{内圧} +σ _{白重} +σ _{地震}	I
n 内圧による応力	MPa	$\sigma_{\rm pl}$	$P \times (D_i + 1.2t) / (4 \times t)$	1
自重による曲げモーメント	N·mm	M _{台東}	W ₀ × 9.80665 × L ∕ 8	Ì
地震による曲げモーメント	N·mm	M _{地震}	(W ₀ × 9.80665 × L ∕ 8) × C _H	Ī
自重と地震による応力	MPa	の 白重+地震	(M _{向東} +M _{地震})/Z	3
発生応力	MPa	の軸流角	σ _{内圧} 十 σ _{白重+地震}	l
※以下の計算により真円筒	での断記	6係数(Z)を		
断面係数	Z	mm ³	$\pi(D_0^4 - D_1^4) / 32D_0$	1

美浜3号機 AB EL.17 水平AB07 (sd波) 水平方向 減衰1.0%

図1 美浜3号機 原子炉補助建屋 床応答曲線(全波包絡FRS)

※き裂の想定箇所は2本の支持脚の中間の位置と想定した。

美浜3号炉-耐震-30rev1

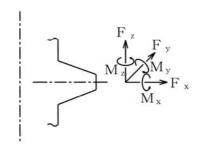

タイトル	蒸気発生器の給水入口管台の疲労割れに対する評価の具体的内容(評価 仕様、解析モデル、入力(荷重)条件、評価結果を含む)について
説明	蒸気発生器の給水入口管台の疲労割れに対する評価の具体的内容について添付に示す。

<<評価仕様>>

評価仕様を表1に示す。

表1 評価仕様

	衣1 評価1	工13%
	項目	仕様
公人 1 口 签 厶	外半径	
給水入口管台	内半径	
外荷重作用基準	生線から評価点までの距離	
評価用温度	_	
Ss地震の繰返し		200回
Sd地震の繰返し回数		300回
給水入口管台の材質		
給水入口管台の	設計応力強さ	
給水入口管台の	○縦弾性係数*1	
	引張	
応力集中係数	曲げ	
*1		ı
L		 _ I


<<入力(荷重)条件>>

ループ応答解析により算出した給水入口管台の荷重条件を表2に示す。荷重6成分(Fx、Fy、Fz、Mx、My及びMz)の値は、それぞれ全ループを包絡したものである。また、荷重については全波包絡荷重*を用いた評価を実施している。

地震動	カ [kN]			モーメント [kN・m]		N • m]
	Fx	Fy	Fz	Mx	My	Mz
Ss	82	104	232	51	556	220
Sd	39	52	117	25	280	109

表 2 給水入口管台の荷重条件

*全波包絡荷重:25 波それぞれで、荷重6成分(Fx、Fy、Fz、Mx、My、Mz)のうち評価に用いる荷重成分で(Max Fx1-24、Max Fy1-24、Max Fz1-24、Max Mx1-24、Max My1-24、Max Mz1-24)を算出し、25 波包絡荷重にて評価を実施した。

また、蒸気発生器の給水入口管台については、工事計画において水平2方向及び鉛直方 向地震力の組合せによる影響評価の評価部位となっていることから、疲労割れに対する耐 震安全性評価においても、水平2方向及び鉛直方向地震力の組合せによる影響評価を行っ た。水平2方向及び鉛直方向地震力の組み合わせによる影響を考慮した場合の、荷重条件 を表3に示す。

表3 給水入口管台の荷重条件(水平2方向)

地震動	力 [kN]			モーメント [kN・m]		
	Fx	Fy	Fz	Mx	My	Mz
Ss	95	121	252	55	613	254

*:各地震動について2方向の地震荷重をSRSSして荷重を算出し、その上で荷重6成分についてそれぞれ最大値を選定した。

<<評価方法>>

Ss/Sd地震時の荷重により発生する応力を下式により計算し、繰返しピーク応力強さに対する許容繰返し回数をJSME S NC1-2005/2007 添付4-2 設計疲労線図 表 添付4-2-1を用いて求めたうえで、疲労累積係数を算出する。

ro : 給水入口管台の外半径 ri : 給水入口管台の内半径

A : 断面積= π (ro²-ri²)

I : 断面二次モーメント = (π/4)(ro⁴-ri⁴)

Fx, Fy, Fz : 力(入力条件)

Mx, My : モーメント(入力条件)

L:外荷重作用基準線から評価点までの距離

My' : $My + Fz \times L$

(一次+二次応力)

$$\sigma x = \frac{Fx}{A} + \frac{My' \cdot ri}{I}$$

$$\tau \ = \frac{\text{Mx} \cdot \text{ri}}{2 \, \text{I}} + \frac{\text{Fy}}{\text{A}}$$

 S_Q : 一次+二次応力強さ = $\sqrt{\sigma x^2 + 4 \tau^2}$

Sn : 一次+二次応力強さの変動幅 = 2SQ < 3Sm (Sm:設計応力強さ)

(一次+二次+ピーク応力)

$$\sigma x = \frac{Fx}{A} \cdot K_T + \frac{My' \cdot ri}{I} \cdot K_B$$

$$\tau = \frac{Mx \cdot ri}{2I} + \frac{Fy}{A}$$

K_T : 応力集中係数(引張)

KB: 応力集中係数(曲げ)

 S_F : 一次+二次+ピーク応力強さ = $\sqrt{\sigma x^2 + 4\tau^2}$

Sp : 一次+二次+ピーク応力強さの最大値と最小値の差 = $2S_F$

S1 : 繰返しピーク応力強さ = $\frac{\mathrm{Sp}}{2}$ (∵ Sn < 3Sm)

<<評価結果>>

評価結果は表4及び表5に示すとおりであり、耐震安全性評価上問題ない。

表 4 給水入口管台の疲労割れに対するSs地震時の評価結果

₹₩ ₩ ★₩ ₩	発生応力	許容値 (MPa)	疲労累積係数 (許容値1以下)		
評価部位	(MPa)		通常運転時	Ss地震時	合計
給水入口管台	547	86	0.317	0. 179	0. 496

表 5 給水入口管台の疲労割れに対するSd地震時の評価結果

亚年女/大	発生応力	許容値 (MPa)	疲労累積係数 (許容値1以下)			
評価部位	(MPa)		通常運転時	Sd地震時	合計	
給水入口管台	276	86	0.317	0.036	0. 353	

また、水平2方向及び鉛直方向地震力の組合せによる影響評価結果は表6に示すとおりであり、耐震安全性評価上問題ない。

表 6 水平 2 方向及び鉛直方向地震力の組み合わせを考慮した評価結果

三亚 在 立四大	発生応力	許容値	疲労累積係数 (許容値1以下)		
評価部位	(MPa)	(MPa)	通常運転時	地震時	合計
給水入口管台	887	86	0.317	0.646	0. 963

美浜3号炉-耐震-31rev1

タイトル

主給水系統配管の疲労割れに対する評価の具体的内容(評価仕様、解析モデル、入力 (荷重)条件、評価結果を含む)について

説明

主給水系統配管の疲労割れに対する評価の具体的内容について以下に示す。

1. 評価仕様

主給水配管の配管仕様を下表に、評価対象配管の系統図を添付1に示す。

		評価対象配管 C主給水配管 (CV 内)			
項目	単位				
		節点 7500~7545	節点 7545~7550		
配管口径	mm	406. 4	406. 4		
配管肉厚	mm	21. 4	40. 5		
材質	-	STPT49	STPT49/STPT480		
縦弾性係数	MPa	1.90×10^{5}	1.90×10^{5}		
最高使用圧力	MPa	7. 48	7. 48		
最高使用温度	$^{\circ}$	230	230		
設計応力強さ (Sm)	MPa	154	154		

表1 主給水配管の配管仕様

2. 解析モデル

発生応力の算出に用いた3次元梁モデル解析のモデル図を添付2に示す。

3. 入力(荷重)条件

基準地震動Ss及び弾性設計用地震動Sdを用いた地震応答解析より得られた次の地震波(時刻歴波)を用いている。

- ·新 750galSP (1 波)
- ・新 750galSP を超える断層波 (21 波)
- ・新 750galSP を超える鳥取県西部地震(1波[2ケース])
- ・新 750galSP を超える留萌地震 620gal (1波)

また、地震繰返し回数は Ss: 200 回、Sd: 300 回としている。

4. 評価結果

(1)応力の解析結果

地震時に生じる応力の解析結果を以下に示す。

表2 地震時に生じる応力の解析結果

	一次応力						一次十二	二次応力
	圧力	自重及 び地震	合計	許容値	ねじり	許容値	地震	許容値
Ss*	38.8	248. 2	288	462	7	112	816	462
Sd	38.8	120.8	160	346	4	84	382	462

*: Ss-3 による評価結果

単位:MPa

(2) 地震によるUF評価結果

Ss 地震によるUF評価結果を表3に示す。

表3 Ss 地震によるUF評価結果

節点 番号	地震による 一次+二次+ピーク 応力(MPa)	繰返し ピーク応力強さ(MPa)	地震による 疲労累積係数
7500	897	933	0.725

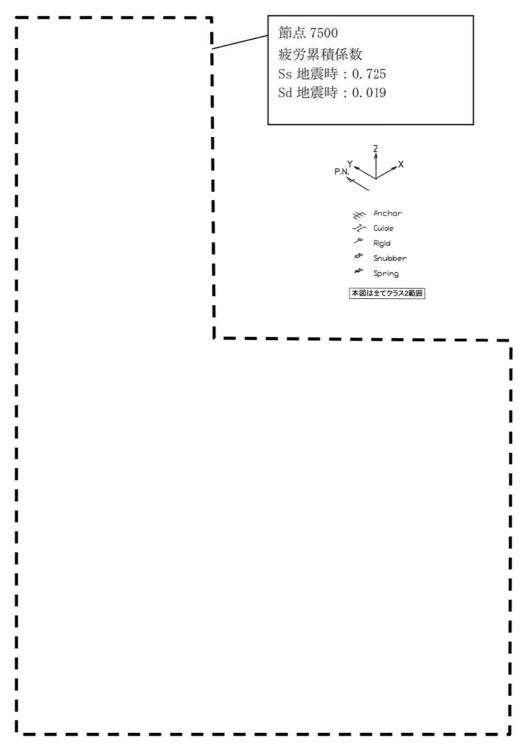
Sd 地震によるUF評価結果を表4に示す。

表 4 Sd 地震によるUF評価結果

節点 番号	地震による 一次+二次+ピーク 応力(MPa)	繰返し ピーク応力強さ(MPa)	地震による 疲労累積係数
7500	420	229	0.019

(3) 通常運転時UFとの組合せによる評価結果

通常運転時のUFを加えた結果を表5及び表6に示す。疲労累積係数が許容値の1以下となることを確認しており、主給水系統配管の疲労割れに対する耐震安全性に問題はない。


表5 Ss 地震時の通常運転時UFとの組み合わせによる評価結果

節点 番号	通常運転時	Ss 地震時	合計
7500	0. 209	0. 725	0. 934

表6 Sd 地震時の通常運転時UFとの組み合わせによる評価結果

節点 番号	通常運転時	Ss 地震時	合計
7500	0. 209	0. 019	0. 228

ı		
i		
i		
i	· · · · · · · · · · · · · · · · · · ·	
i	<u>'</u>	
;	<u>'</u>	
!		
!		
!		r –
ļ	ı	i .
ı	ı	3
I	I	■ #6
I	I	470
I	I	1 16
I	I	20
I	ı	I , j
I	i	1 2
ı	i	図■悪
ı		統一公
Ī		E 8
i	! 	1 1
i		少□項
i	<u>'</u>	≥ I ∰
;	! ! !	○Ⅰ ※
:		
!		配■緩
!	· ·	治しな
!	I I	年 囲
ı	ı	
I	I	14
I	I	40 章
I	I	8
I	I	美
I	i	2007
I	i	
ı	i	
ı	i	
Ī		
i		
i		
i	<u>'</u>	
•	<u> </u>	
•		
!	· · · · · · · · · · · · · · · · · · ·	
ı	ı	
ı	ı	
I	I	
I	ı	

美浜3号炉 C-主給水配管(CV内) (解析モデル)

美浜3号炉-耐津波-1

タイトル

- ・浸水防護施設(津波防護施設、浸水防止設備、津波監視設備)のリストアップ及び耐津波安全性評価の対象設備の、具体的な抽出根拠・抽出プロセス及び評価内容について。
- 経年劣化事象として止水材料の劣化を評価対象としない場合の具体的な 根拠及び妥当性について。

説明

美浜3号の「浸水防護施設」のうち、耐津波安全性評価対象とした設備について、経年劣化事象の抽出や耐津波安全性評価の要否判断などのプロセスを示す。

1. 浸水防護施設について

耐津波安全性評価対象とした浸水防護施設(津波防護施設、浸水防止 設備、津波監視設備)については以下のとおり。

(1) 津波防護施設: · 防潮堤… a

屋外排水路逆流防止設備…b

- (2) 浸水防止設備:・取水構造物(海水ポンプ室浸水防止蓋)… c
- (3) 津波監視設備: ·潮位計 ··· d
- 2. 想定される劣化事象※
 - (1) コンクリート構造物 (対象 a)
 - a. 高経年化対策上着目すべき経年劣化事象 (○事象)
 - · 中性化 ···①
 - 塩分浸透 …②
 - b. 高経年化対策上着目すべき経年劣化事象ではない事象 (△▲事象)
 - ・アルカリ骨材反応 …③
 - 凍結融解 …④
 - •耐火能力低下 …⑤
 - (2) 鉄骨構造物 (対象a, b, c)
 - a. 高経年化対策上着目すべき経年劣化事象 (○事象) 該当なし
 - b. 高経年化対策上着目すべき経年劣化事象ではない事象 (△▲事象)
 - 腐食

- ...(6)
- ・風などによる疲労 …⑦
- (3) 計測制御設備(対象d)
 - a. 高経年化対策上着目すべき経年劣化事象 (○事象) 該当なし
 - b. 高経年化対策上着目すべき経年劣化事象ではない事象 (△▲事象)
 - ・樹脂の劣化 (ケミカルアンカー) …8
 - ・腐食(支持構造物)…⑨
 - ※: 絶縁低下(絶縁体の水トリー劣化による絶縁低下を含む)、特性変化及び 導通不良については、耐津波安全性に影響を及ぼすパラメータの変化とは無 関係であるため記載は省略する。

- 3. 耐津波安全上考慮する必要のある経年劣化事象の抽出 「2. 想定される劣化事象」で整理した経年劣化事象①~⑧について、 耐津波安全上考慮する必要のある経年劣化事象の有無について検討した プロセスを下表に整理した。
- 表1 耐津波安全上考慮する必要のある経年劣化事象の有無検討プロセス

「技術評価」で想定される経年劣化事象			ステップ1	ステップ 2			ステップ3	
高経年化対策上 着目すべき 経年劣化事象	下記 1)~2)を除く経年劣化事象		0	i	高経年化対策上着目すべき経年 劣化事象であるが、現在発生し ておらず、今後も発生の可能性 がないもの、または小さいもの	× ①②	×	
				ii	現在発生しているか、または得 楽にわたって起こることが否定 できないもの	0	構造・強度上および止水性上 「軽微もしくは無視」できな い事象	0
							構造・強度上および止水性上 「軽微もしくは無視」できる 事象	•
		想定した劣化傾向と実際の劣化 傾向の乖離が考えがたい経年男 1) 化事象かって、想定した劣化 低向等に基づき運切な保全活動 を行っているもの (日常劣化管理事象)		i	日常劣化管理事象であるが、現 在発生しておらず、今後も発生 の可能性がないもの、または小 さいもの	-0	-	
享 延年化対策上				ü	現在発生しているか、または将 来にわたって起こることが否定 できないもの	0	構造・強度上および止水性上 「軽微もしくは無視」できな い事象	0
着目すべき 経年劣化事象 ではない事象							構造・強度上および止水性上 「軽徴もしくは無視」できる 事象	6
1000	2)	現在までの運転経験や使用条件 から得られた材料試験データと の比較等により、今後も経年また 化の漁艇領南が極めて小さいと考 えられる経平気化事象 (日常多化管理事象以外)	-		3(4)5(7)8)		_	

- (日常男に管理事象以外)

 △: 高極年化対策上着目すべき極等化生や事象(日本男化管理事象)

 ▲: 高極年化対策上着目すべき極等化を発生の化す象(日常男化管理事象以外)

 ○: 評価対象として抽出

 高極年化対策上着目すべき延年男化事象ではない事象であり、日常男化管理事象以外であるもの、あるいは日常男化管理事象であるが、現在発生しておきず。会後も発生の可能性がないもの、または小さいものとして評価対象から除外

 高極年化対策上着目すべき極年男化事象であるが、現在発生しておらず、今後も発生の可能性がないもの、または小さいものとして評価対象から除外

 「構造・健変上および止め性上「軽極もしくは無視」できる事象として評価対象から除外

 計画波安全上考達する必要のある極年男化事象であるが、現在発生しておらず、今後も発生の可能性がないもの、または小さいものとして評価対象から除外

以上より、美浜3号の「浸水防護施設」については、◎となる対象は 無かったことから、経年劣化を考慮した耐津波安全性評価を実施したも のはない。

4. 浸水防護施設に使用される止水材料の扱い 浸水防護施設に使用している止水材料は、定期取替品であることか ら、高経年化評価対象外としている。

> 以 上