美浜3号炉-耐震-3

タイ	h	11

耐震Sクラスの機器を支持する主要部位(建屋、内部コンクリート等)における、基準地震動Ss-1と代表基準地震動(Ss-3, 4, 6, 7, 15, 16, 19, 21)による地震応答の比較(最大応答加速度、加速度応答スペクトル)について

説明

内部コンクリート (I/C) 、外部遮蔽建屋 (0/S) 、原子炉建屋基礎、および原子炉補助建屋 (A/B) について、基準地震動Ss-1および代表基準地震動 (Ss-3, 4, 6, 7, 15, 16, 19, 21) による最大床応答加速度の比較を添付 1 に示す。

また、耐震Sクラス機器を支持する主要部位 (IC20、IC21、0S01、 0S02、AE07、AB08) における床応答スペクトルの比較を添付 2 に示す。

なお、比較表/図における各地震波の名称は下記の通りです。

- ·Ss-1 : 基準地震動Ss (水平最大加速度750Gal)
- ・Ss-3 : C断層を考慮した地震波
- ·Ss-4 : C断層を考慮した地震波
- ・Ss-6 : C断層を考慮した地震波
- ・Ss-7 : C断層を考慮した地震波
- ・Ss-15 : 大陸棚外縁~B~野坂断層を考慮した地震波
- ・Ss-16 : 大陸棚外縁~B~野坂断層を考慮した地震波
- ・Ss-19 : 安島岬沖~和布-干飯崎沖~甲楽城断層を考慮した地震波
- ・Ss-21 : 安島岬沖断層~和布-干飯崎沖断層~甲楽城断層~甲楽城沖 断層~浦底断層~池河内断層~柳ヶ瀬山断層~柳ヶ瀬断層南

部〜鍛冶屋断層〜関が原断層を考慮した地震波

<添付1>

Ss-1, 3, 4, 6, 7, 15, 16, 19, 21の建屋の解析モデル図および最大応答加速度を示す。

【I/C (内部コンクリート) 】

- ○水平方向:上2階層でSs-1、下1階層でSs-3が最も大きい加速度を示す。
- ○鉛直方向:全ての階層でSs-16が最も大きい加速度を示す。

【0/S (外部遮へい建屋) 】

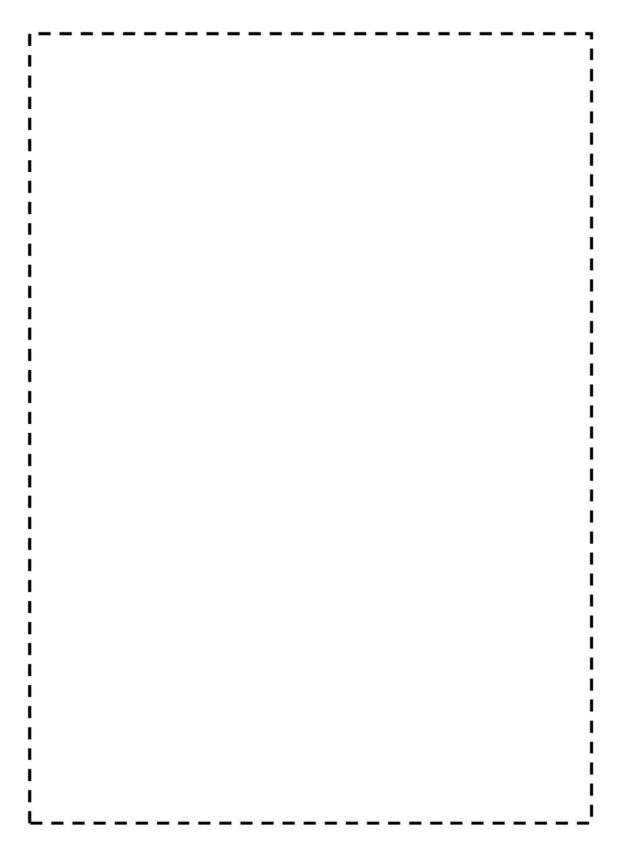
- ○水平方向:一部の階層でSs-3やSs-4が上回る他は、Ss-1が上回っている。
- ○鉛直方向:上3階層でSs-1、中4階層でSs-15、下2階層でSs-16が上回っている。

【A/B (原子炉補助建屋)】

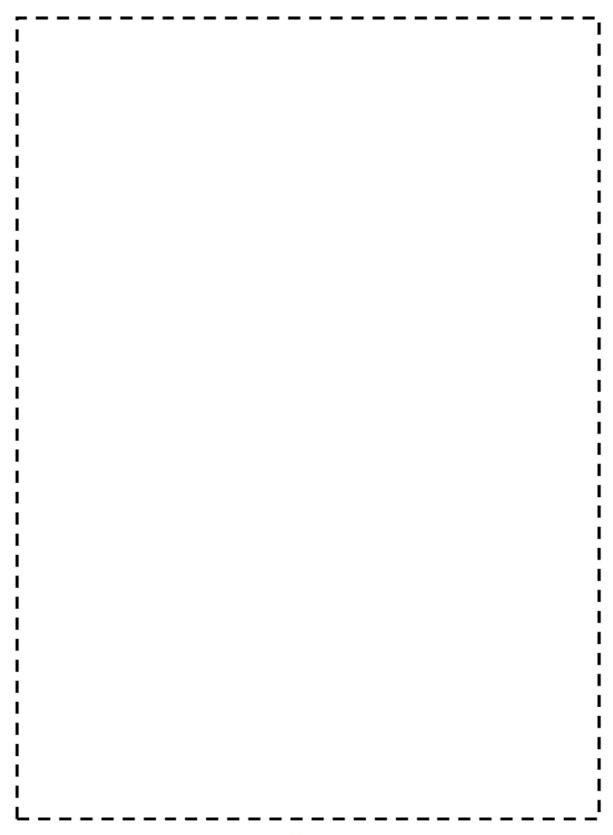
- ○水平方向:一部の階層でSs-4、Ss-6、Ss-16が上回る他は、Ss-1とSs-3が上回っている。
- ○鉛直方向:全ての階層でSs-1が最も大きい加速度を示す。

<添付2>

耐震Sクラス機器を支持する主要部位 (IC20 (EL+23.8m),


IC21 (EL+32.1m) ,OS01 (EL+17.0m) ,OS02 (EL+24.0m) ,

AB07 (EL+17.0m), AB08 (EL+24.0m)) における各地震波の床応答スペクトル (方向:水平・鉛直、減衰定数:1.0%) の比較を示す。

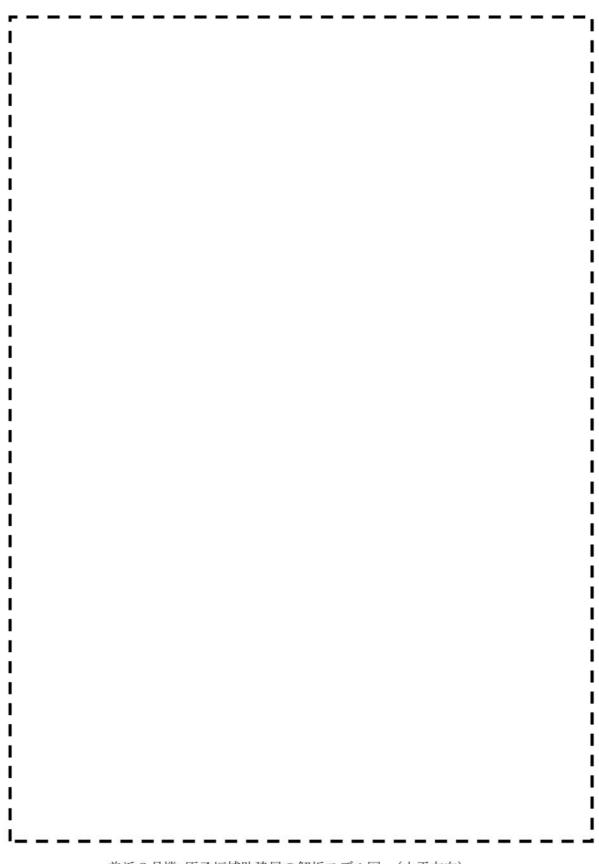

<添付3>

Ss-1, 3, 4, 6, 7, 15, 16, 19, 21による最大床応答加速度をグラフ化して比較を示す。

以上

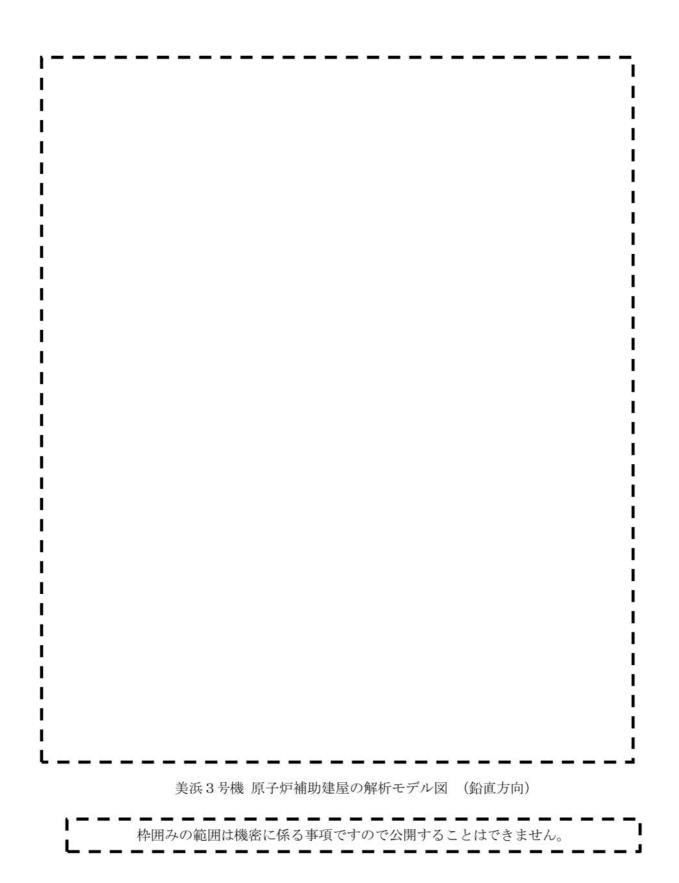
美浜3号機 原子炉建屋の解析モデル図 (水平方向)

美浜3号機 原子炉建屋の解析モデル図 (鉛直方向)


枠囲みの範囲は機密に係る事項ですので公開することはできません。

Se-16 Se-16 Se-16 Se-16 Se-16 Se-16 Se-16 Se-16 Se-19 Se-21 Se-2	SS-1,3,4,6,7,15,16,19,21のうち最大の値
Ss-16 Ss-19 Ss-	
Ss-16 Ss-19 Ss-	
Ss-16 Ss-19 Ss-1	
Ss-16 (Człw) 5 McGałk (Tytw) (Człw) 5 McGałk (Tytw)	
SS-16 EF - NS ((大声)) 方向色器)うち最大の値
Ss-16 (C(大海)))うち最大の値
Se-15 Se)うち最大の値 公開することはで
)うち最大の値 公開すること
)うち最力
A大尾心等加速度(G) Ss-7 Ss-75 Ss-75 Ss-75 Ss-75 Ss-76 (Cが向) (Cが向) (Cが向) 大向電路 (Cが向)	05年
	C 16
展大展応答加速度 (C) Ss-7 Ss-7 (T5向) (U5向) が 5 向包能 (U5向) が 5 向包能	9,216
 	16,19,
※ NS な NS	15,1
Wat	6,7,6
N - NS	3,4,8治门
85~6 ((())) ((())) (())	Ss-1, 3
10 10 10 10 10 10 10 10	1 観日
28. NS N	国みの日
SS-4 (C/Apl) 748 (4
S: (3/24) (3/24) (3/24) (4/24)	
1	
Sa-3 (CA) (CA) (CA) (CA) (CA) (CA) (CA) (CA)	
88 885年 (大万年) 海	
(1) (1) (2) (2) (3) (4) (4) (5) (5) (5) (5) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6	
Ss-1 ((Xf/pl)) ((Xf/pl))	
解析 (m) (m) (m) (m) (m) (m) (m) (m)	
(5.09 (5.	
建屋 外部しゃへい強度 原子炉格制容器 内田コンク 基礎 落気 落生	

			最大床応答加速度(G)											
建屋	質点 番号 ()節点	質点 高さ EL.(m)	Ss-1	Ss-3	Ss-4	Ss=6	Ss-7	Ss-15	Ss-16	Ss-19	Ss-21			
-340	い即息	LU. (III)	UD方向 (V方向)											
	0809	86. 8												
	0S08	76. 8	I											
	0807	66, 0	l											
外部	0S06	57. 6												
しゃへ	0S05	49. 2	5											
建屋	0S04	40.8	l											
	0S03	32. 3	ı											
	0S02	24. 0												
	0801	17. 0	l											
	CV18	82. 4	ĺ											
	CV17	74. 4	l											
	CV16	66. 4	l											
原子	CV15	58. 4												
炉格納	CV14	50. 4	! !											
容器	CV13	42. 4	l											
	CV12	34. 4	l											
	CV11	26. 4	l											
	CV10	17. 0	l I											
内	IC21	32. 1	ĺ											
リ部 トコ トン	1020	23. 8	I											
2	IC19	16.7	l											
基礎	BS41	5, 30												
器 発 集 気	SG36	34. 77	l I											


: Ss-1, 3, 4, 6, 7, 15, 16, 19, 21のうち最大の値

枠囲みの範囲は機密に係る事項ですので公開することはできません。

美浜3号機 原子炉補助建屋の解析モデル図 (水平方向)

枠囲みの範囲は機密に係る事項ですので公開することはできません。

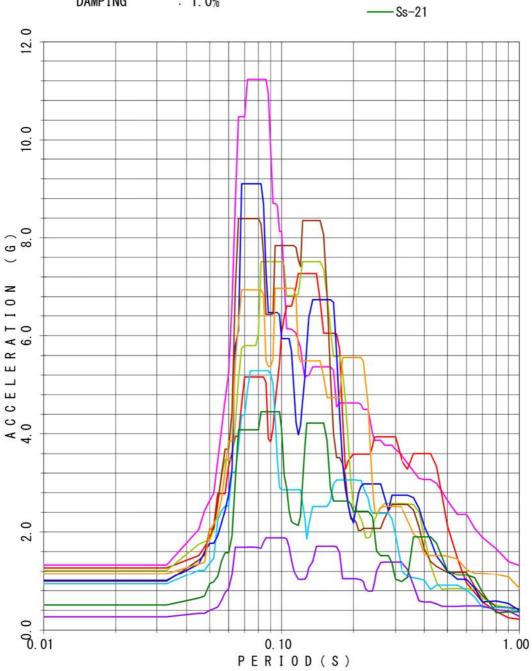
		EW·NS 方向包絡	ı –	_	_	_	-		-	-	-	- ·			-	-	-,
	_																I
	Ss-21	EW方向 (X方向)															- !
		NS方向 (Y方向)															i
		EW·NS 方向包絡	•														ı
	Ss-19	EW方向 (X方向)															-
		NS方向 (Y方向)															i
:		EW·NS 方向包絡															- !
	Ss-16	EV方向 (X方向)															i
		NS方向 (Y方向)															-!
1		EW·NS N 方向包絡 ()															i
	Ss-15	5年 5年)															!
	Š	NS方向 EFC (Y方向) (X大															
		· NS 包格															- !
加速度(G)																	-
最大床応答加速度	Ss-7	尚 EW方向 向) (X方向)															i
喉		NS NS方向 1格 (V方向)															- !
	10	向 EW·NS (1) 方向包絡	i														i
	Ss-6	1 EW方向) (X方向)															!
		NS方向 (Y方向)															i
		EW·NS 方向包絡															ı
	Ss-4	EW方向 (X方向)	E.														-
		NS方向 (Y方向)	ı														i
		EW·NS 方向包絡															l ı
	Ss-3	EW方向 (X方向)															i
		NS方向 (Y方向)															!
		EW·NS 方向包格															i
	Ss-1	(X方向) 7															!
	1.000	NS方向 E (Y方向) ()															I I
	旗を 10	_	52.88	44.75	40.8	40.8	40.8	32. 3	24.0	17.0	32. 3	24.0	17.0	10.1	17.0	17.0	11.0
	() () () () () () () ()		AB14	AB13	AB12	AB11	AB10	AB09	AB08	AB07	AB06	AB05	AB03	AB01	AB15	AB04	AB02
	機器	68	24	t 股 救 #	199-1	3075				2000	雅 居間		E 悪 想 I			ナー ブ	
(40)				treë.		157		3		東國	ै				最豐		

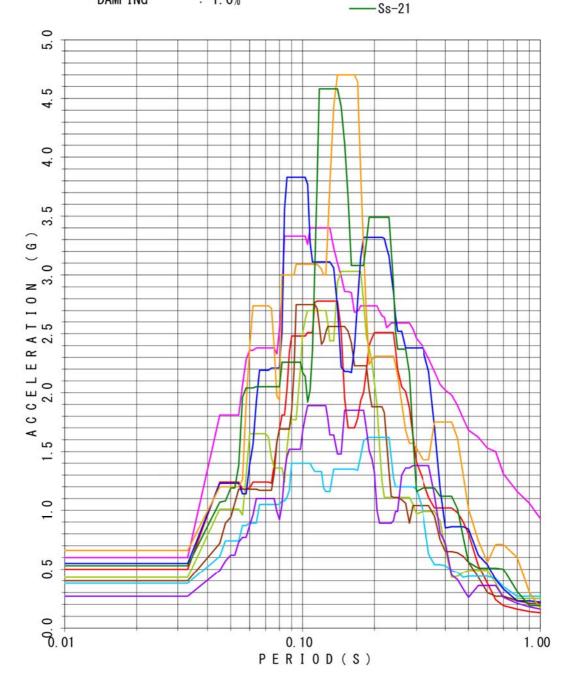
: Ss-1, 3, 4, 6, 7, 15, 16, 19, 21のうち最大の値

						最	大床応答加速度	(G)			
建屋	質点 番号 ()節点	賀点 高さ EL.(m)	Ss-1	Ss-3	Ss-4	Ss=6	Ss-7	Ss=.5	Ss-16	Ss-19	Ss-21
	(7 1017)%	Liter (III)	UD方向 (V方向)								
燃料	AB14	52.88									
取 扱	AB13	44. 75									
建屋	AB12	40. 8									
AE 補助 建 AE	AB11	40, 8									
	AB10	40.8									
	AB09	32. 3									
屋	AB08	24.0									
	AB07	17. 0									
建中屋間	AB06	32. 3									
	AB05	24, 0									
御建	AB03	17. 0									
屋	AB01	11.0									
デ	AB15	17.0									
建屋ゼ	AB04	17. 0									
N	AB02	11.0									

: Ss-1, 3, 4, 6, 7, 15, 16, 19, 21のうち最大の値

枠囲みの範囲は機密に係る事項ですので公開することはできません。 ▮

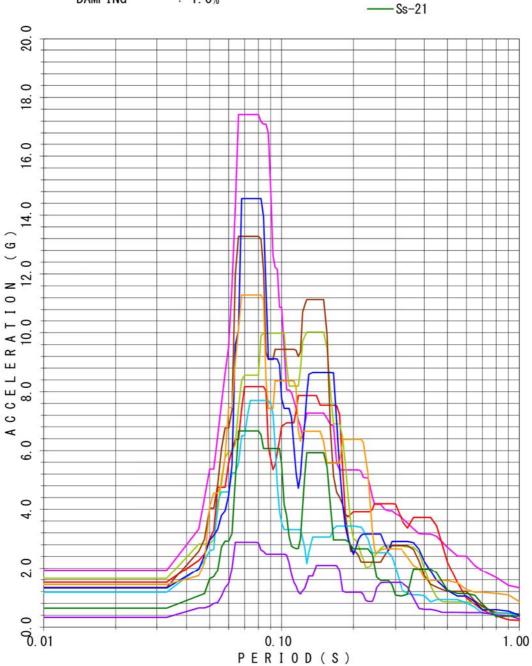

1. 内部コンクリートの床応答スペクトル

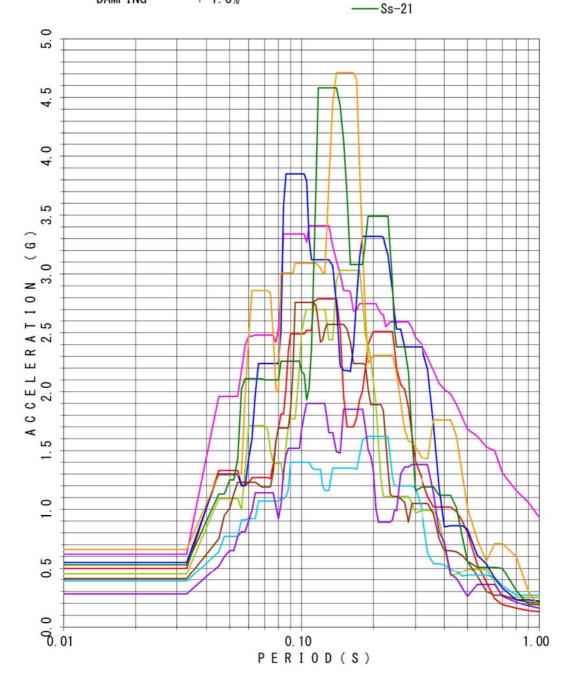

FLOOR RESPONSE SPECTRUM

12.0 0 ~° ° ∞ Z 0 A T I 6.0 8 ш E ပ A C 4.0 9.01 0.10 1.00 PERIOD(S)

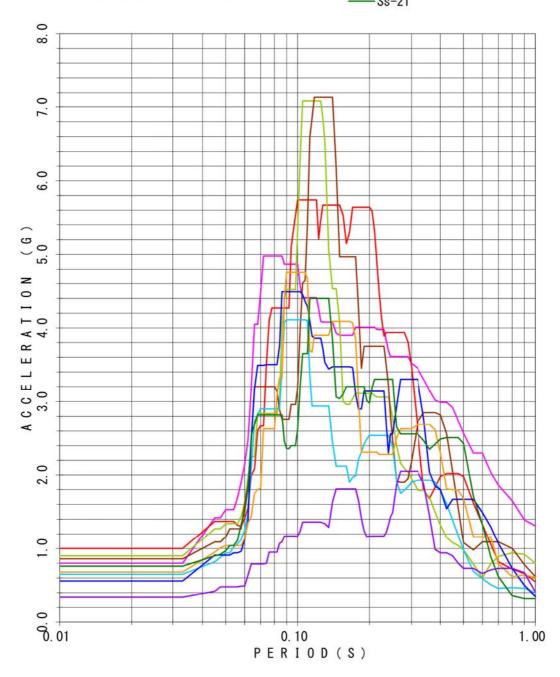
UNIT NAME : KMN-3 -Ss-1 ---Ss-3 WAVE DIRECTION: Y Ss-4 ----Ss-6 BUILDING NAME : IC Ss-7 ----Ss-15 ELEVATION : EL 23.800M #IC20 DAMPING : 1.0%

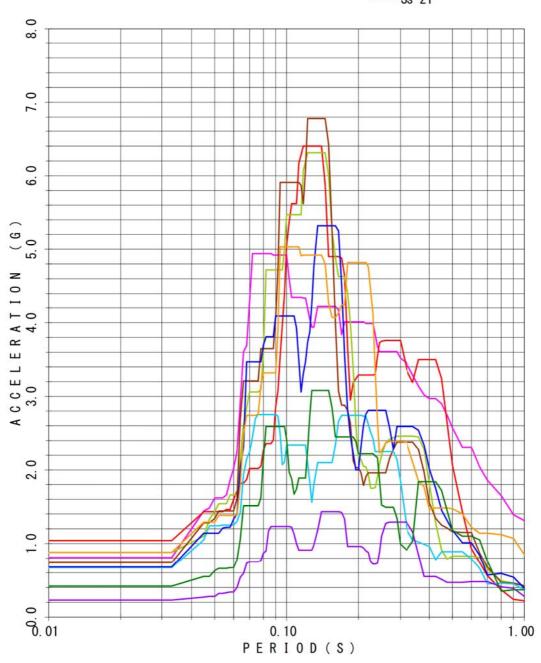
----Ss-19 -Ss-16



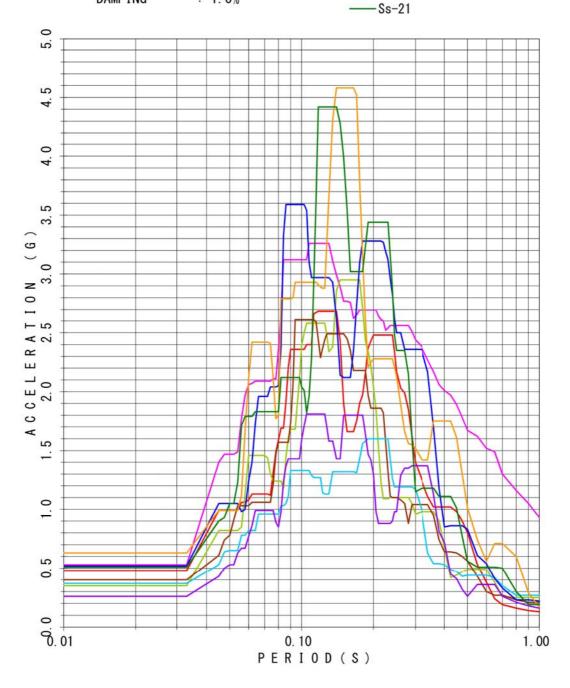


UNIT NAME : KMN-3 -Ss-1 ----Ss-3 WAVE DIRECTION: Y Ss-4 ----Ss-6 BUILDING NAME : IC Ss-7 ----Ss-15


ELEVATION : EL 32.100M #IC21 DAMPING : 1.0% ----Ss-19 -Ss-16


2. 外部遮へい建屋の床応答スペクトル

FLOOR RESPONSE SPECTRUM



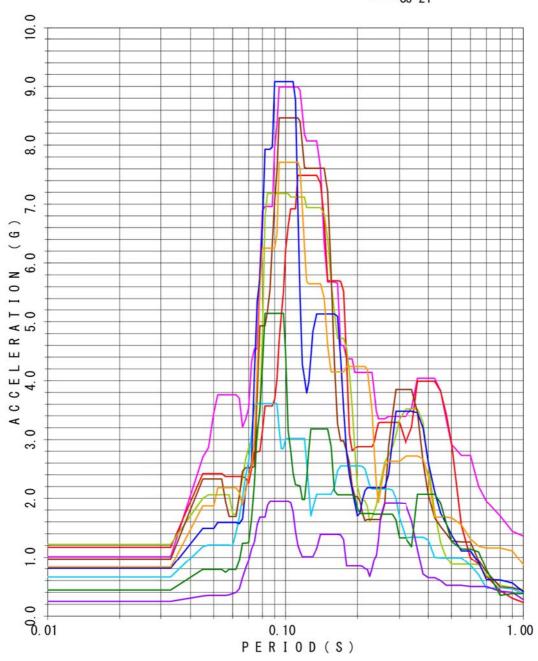
UNIT NAME : KMN-3 -Ss-1 ----Ss-3 WAVE DIRECTION: Y Ss-4 ----Ss-6 BUILDING NAME : OS Ss-7 ----Ss-15 ELEVATION : EL 17.000M #0S01 DAMPING : 1.0% ----Ss-19 -Ss-16

-Ss-21

UNIT NAME : KMN-3	Ss-1	Ss-3
WAVE DIRECTION: V	Ss-4	Ss-6
BUILDING NAME : OS	Ss-7	Ss-15
ELEVATION : EL 17.000M #0S01	Ss-16	——Ss-19
DAMPING : 1.0%	00 10	00 10

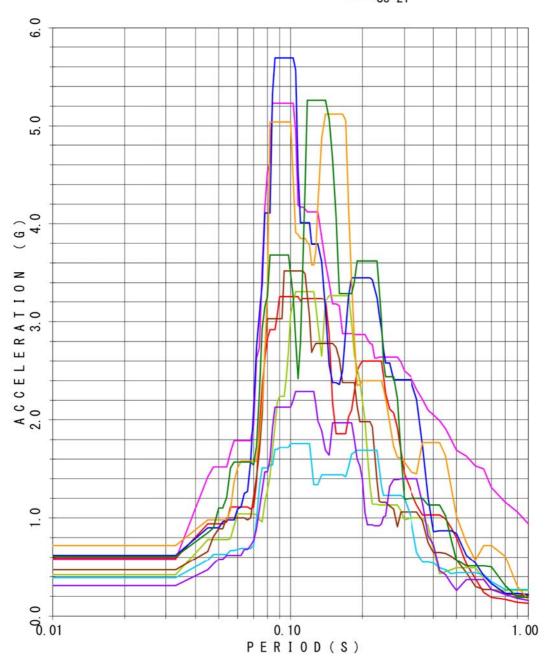
1.00

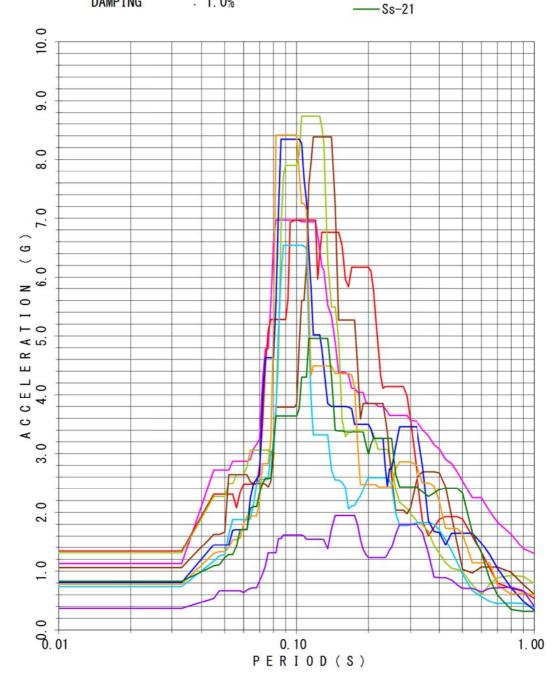
FLOOR RESPONSE SPECTRUM


0.10

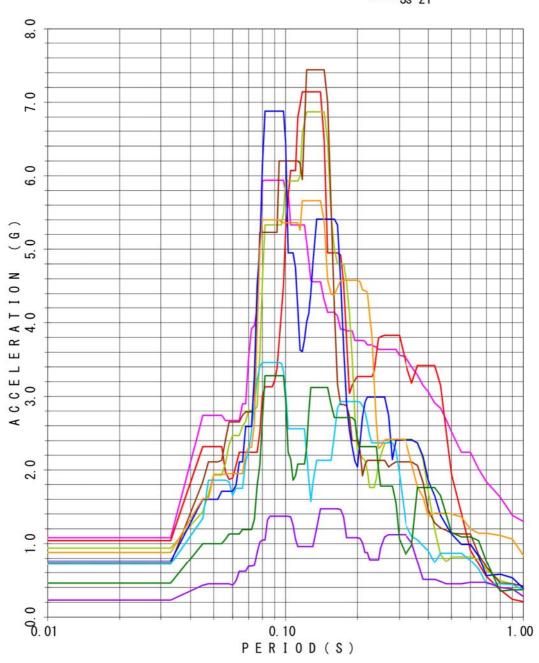
PERIOD(S)

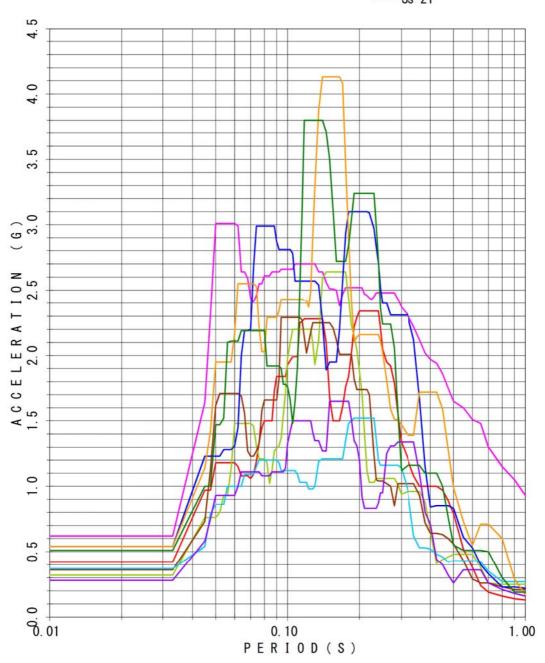
0. U1


UNIT NAME : KMN-3 -Ss-1 ----Ss-3 WAVE DIRECTION: Y Ss-4 ----Ss-6 BUILDING NAME : OS Ss-7 ----Ss-15 ELEVATION : EL 24.000M #0S02 DAMPING : 1.0% ----Ss-19 -Ss-16

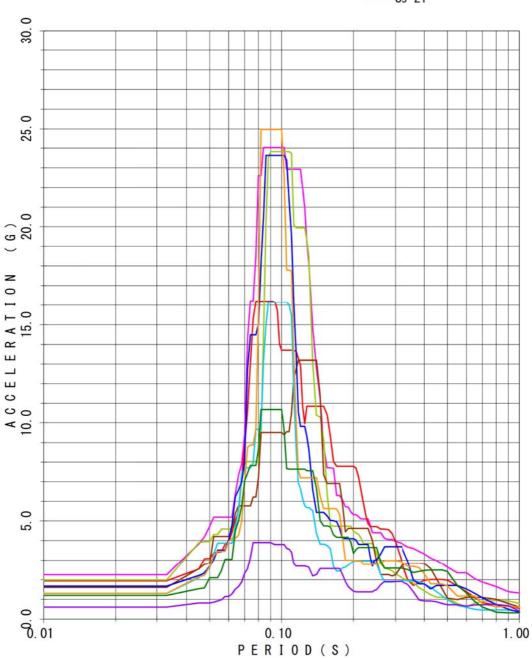

-Ss-21

UNIT NAME : KMN-3 ----Ss-1 ----Ss-3 WAVE DIRECTION: V -Ss-4 ----Ss-6 BUILDING NAME : OS -Ss-7 -Ss-15 ELEVATION : EL 24.000M #0S02 DAMPING : 1.0% -Ss-16 ----Ss-19

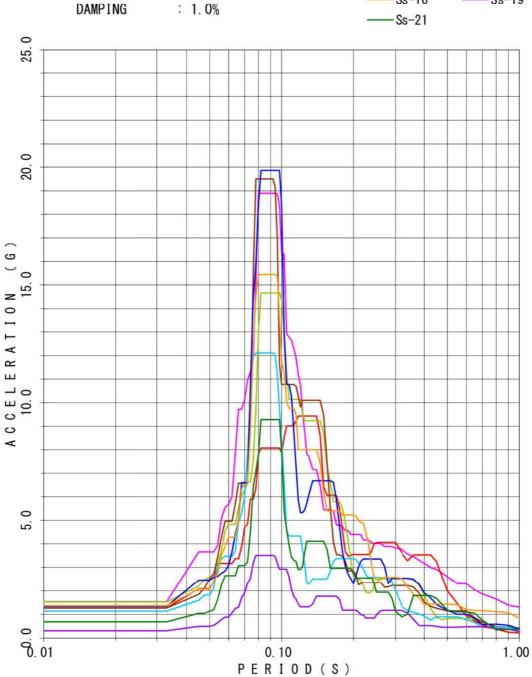

----Ss-21

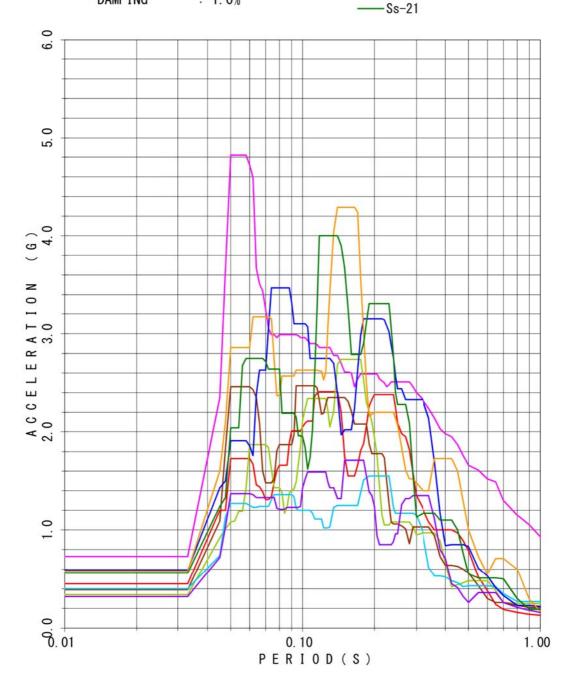

UNIT NAME : KMN-3 -Ss-1 ----Ss-3 WAVE DIRECTION: Y Ss-4 ----Ss-6 BUILDING NAME : AB Ss-7 ----Ss-15 ELEVATION : EL 17.000M #AB07 DAMPING : 1.0% ----Ss-19 -Ss-16

-Ss-21


UNIT NAME : KMN-3 -- Ss-1 ----Ss-3 WAVE DIRECTION: V -Ss-4 ----Ss-6 BUILDING NAME : AB -Ss-7 ----Ss-15 ELEVATION : EL 17.000M #AB07 DAMPING : 1.0% ----Ss-19 -Ss-16

— Ss-21




UNIT NAME : KMN-3 -Ss-3 -Ss-1 WAVE DIRECTION: X -Ss-4 -Ss-6 BUILDING NAME : AB Ss-7 -Ss-15 ELEVATION : EL 24.000M #AB08 DAMPING : 1.0% ----Ss-19 -Ss-16

-Ss-21

1. 内部コン	/クリート				
Ī					- ;
i					ı
!					- !
;					i
Ī					!
!					i
i					!
!					- ;
i					1
!					-
i					i
!					!
;					i
!					!
:					i
İ					!
!					i
i					!
!					- ;
i					!
!					- ;
i					!
!					- ;
i					i
!					
i					i
L					'
1	枠囲みの範囲は機	& 密に係る事項で	すので公開するこ	とはできません。	

. 外部遮へい建屋	
	į
	i
	1
	:
	į
	i
	1
	:
	į
	1
	:
	:
	į
	1
	:
	į
	i
	!
枠囲みの範囲は機密に係る事項ですので公開することにできません。	

3. 原子炉補助建屋	,
<u>:</u>	i
1	į
I I	į
I I	
1 1	
i	
<u> </u>	İ
1	į
1 1	į
I I	
I I	;
1 1	
!	
<u> </u>	İ
i I	į
1 1	į
	į
I I	;
L	'
枠囲みの範囲は機密に係る事項ですので公開することは	できません。

美浜3号炉-耐震-4

タイトル

建設後の耐震補強の実績がある場合の、下記種別(イ、ロ、ハ、ニ)ごとの実施時期と工事概要(サポートの撤去、移動、追設、容量変更の要点を含む)について。

- イ) 耐震バックチェックに関連した耐震補強ケース
- ロ)新規制基準適合申請に関連した耐震補強ケース
- ハ)経年劣化事象の評価に関連する耐震補強ケース
- ニ)イ)、ロ)、ハ)以外の耐震補強ケース

説明

建設後の耐震補強の実績について、次のとおり纏めた。

- イ) 耐震バックチェックに関連し耐震裕度向上を目的として、以下工事を 実施している。
 - ○原子炉格納容器内にある配管の支持構造物について、支持部材の追加 等を実施した。

第22回定検(平成19年度) (工事概要:添付1(1/4))

○原子炉冷却系統などの配管、格納容器排気系統などのダクト、電気計 装盤類などの支持構造物を強化した。

第23回定検(平成20年度) (工事概要:添付1(2/4))

○余熱除去系統や化学体積制御系統などの配管、アニュラス循環系統や 補助建屋よう素除去排気系統のダクト、蒸気発生器や加圧器などの機 器類の支持構造物を強化した。

第24回定検(平成21年度) (工事概要:添付1(3/4))

○余熱除去系統や内部スプレイ系統などの配管、アニュラス循環系統の ダクト、蒸気発生器などの機器の支持構造物を強化した。

第25回定検(平成23年度~) (工事概要:添付1(4/4))

- ロ) 新規制基準適合申請に関連した耐震補強ケースは、添付2のとおり。
- ハ)経年劣化事象の評価に関連する耐震補強ケースは、添付2のとおり。
- 二)建設以降の工事計画認可申請書及び工事計画届出書において、今回提出した「美浜3号機 耐震安全性評価書」で評価対象とした機器の部位に対し、耐震計算を実施している工事を抽出した結果は、以下のとおり。
 - ○低圧タービンロータ他取替工事

(LP-3) 第14回定検(平成6~7年度)

(LP-1, 2) 第15回定檢(平成8年度)

[工事概要]

低圧タービンロータ及び関連部位の取替えを行った。なお、特別な 耐震補強は実施していない。

○原子炉容器上蓋取替工事 第15回定検(平成8年度)

[工事概要]

国内外における600系ニッケル基合金使用部位に応力腐食割れが確認されていることに鑑み、上部蓋管台部に耐応力腐食割れに優れた

690系ニッケル基合金を使用した原子炉容器上部蓋に取替えるとと もに、制御棒駆動装置等を一体で取替えた。なお、特別な耐震補強 は実施していない。

○蒸気発生器取替工事 第15回定検 (平成8年度)

[工事概要]

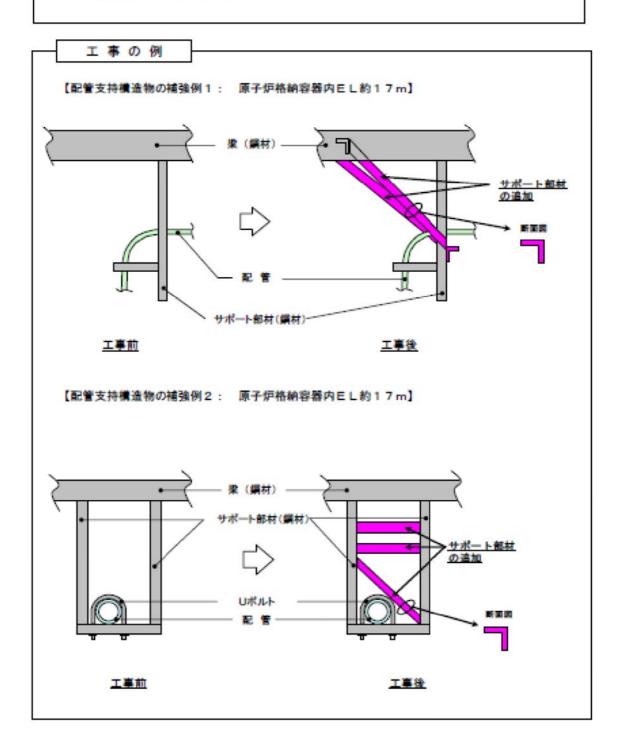
美浜2号機蒸気発生器細管破断事故に鑑み、蒸気発生器の取替を行った。なお、特別な耐震補強は実施していない。

○燃料取替用水タンク取替工事 第19回定検(平成13年度) 「工事概要」

海塩粒子による塩素型応力腐食割れに対する長期保全の観点から、 燃料取替用水タンクを取替えた。なお、特別な耐震補強は実施して いない。

○格納容器再循環サンプスクリーン取替工事 第24回定検 (平成21年度)

[工事概要]

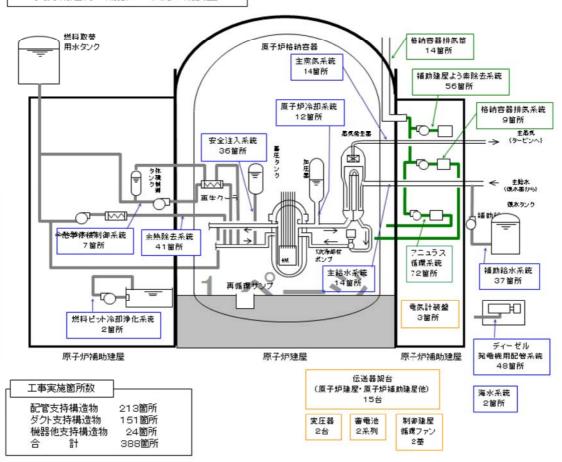

平成20年2月に「非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について(内規)」(平成20年2月27日平成20・02・12原院第5号)及び「格納容器再循環サンプスクリーン閉塞事象に関する対応について」(平成20年2月29日平成20・02・28原院第3号)が発出され、上記内規の制定により、具体的な格納容器再循環サンプスクリーンの性能評価手法が明確になったことを受け、既設のスクリーンを撤去し、上記内規に適合する性能の向上(面積の拡大)を図った新たなスクリーンを設置した。

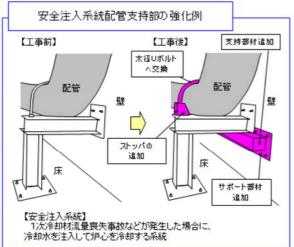
以 上

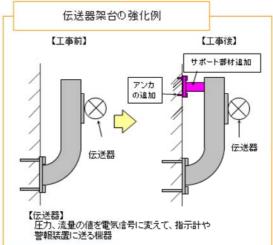
美浜3号機 第22回定検 耐震裕度向上工事 概要

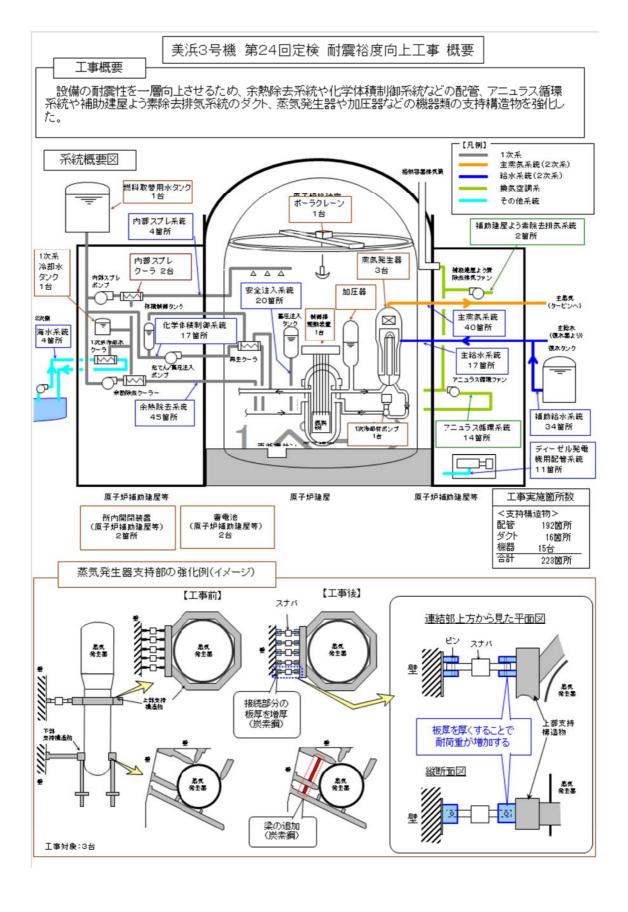
工事概要

既設設備の耐震性を一層向上させるため、原子炉格納容器内にある配管の支持構造物10箇所に ついて、支持部材の追加等を実施した。




美浜3号機 第23回定検 耐震裕度向上工事 概要


工事概要


既設設備の耐震性を一層句上させるため、原子炉冷却系統などの配管、格納容器排気系統などのダクト、電気計装盤類などの支持構造物を強化した。

支持構造物を補強した系統の概要図

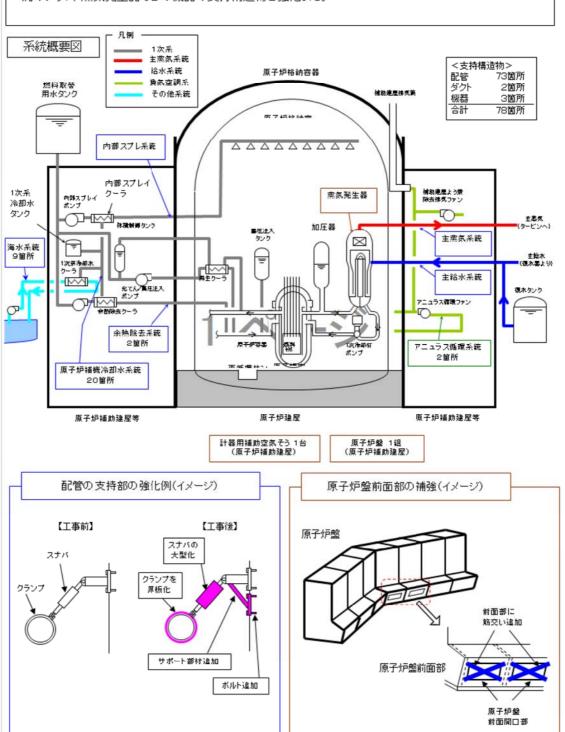


図-1 耐震裕度向上工事

工事概要

設備の耐震性を一層向上させるため、余熱除去系統や内部スプレイ系統などの配管、アニュラス循環系統のダクト、蒸気発生器などの機器の支持構造物を強化した。

美浜3号機 耐震補強工事(配管以外)

80000000	美洪 3 亏機 附展 棚 独 上 争 (配 官 以 外)	2 22 222	
機器名	補強内容	実施時期	ケース
燃料取替用水タンク			
復水タンク			П
抽出水再生クーラ	 		
制御棒駆動装置			
伸縮継手			ロハ
炉内構造物取替	【炉内構造物取替】 <工事概要> 海外で発生しているバッフルフォーマボルトの損傷事例への対応や耐震性向上を図るため、これらへの対策を施した炉内構造物(上部炉心構造物、下部炉心構造物)の取替えを行う。 ○最新設計の採用上部炉心構造物の形状等を最新設計に変更する。 ○高経年化対策 Bbの長尺化等による発生応力の低減と、ボルト冷却穴の設置による使用環境の改善を行い、応力腐食割れに対する耐性の向上を図る。 ○新規制基準(耐震)対策ラジアルサポートの構造変更を行い、耐震性向上を図る。 (添付2(5/5)参照	未定	ロハ

枠囲みの範囲は機密に係る事項ですので公開することはできません。 ▮

燃料取替用水タンク取					 			-
タンク取替概要	 							
燃料取替用水	 							
美浜3号機	 							
	 	 	 	 	 	 	 	 ا ا ار

枠囲みの範囲は機密に係る事項ですので公開することはできません。

美浜3号機 CRDM中間耐震サポート追設工事概要

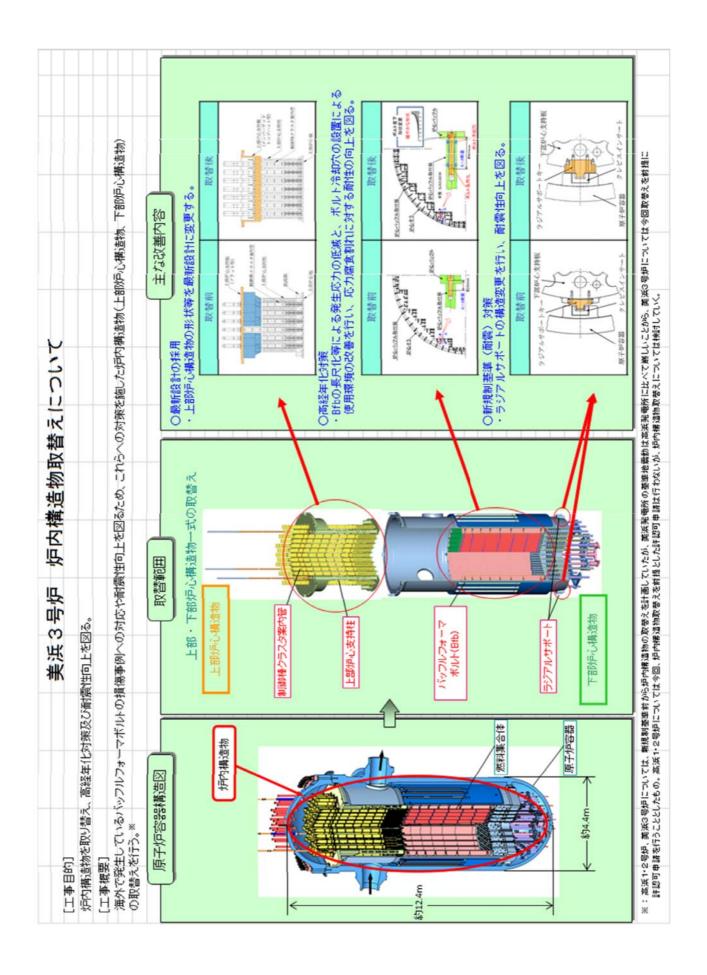
美浜3号機 主蒸気・主給水管ベローズの改造概要

【工事目的】

基準地震動を踏まえ設備の耐震裕度を向上させるため、伸縮継手の機能を強化する。

【工事概要】

機械ペネトレーションのうち、主蒸気系統及び主給水系統配管貫通部伸縮継手について、耐震補強として取替を実施する。


【補強例】

	ı
ı	ı
ı	i
ı	
ī	:
i	
÷	ı
:	ı
!	ı
ı	ı
ı	ı
ı	i
ı	
ī	:
i	
:	ı
!	ı
۱	

表 主な改造諸元

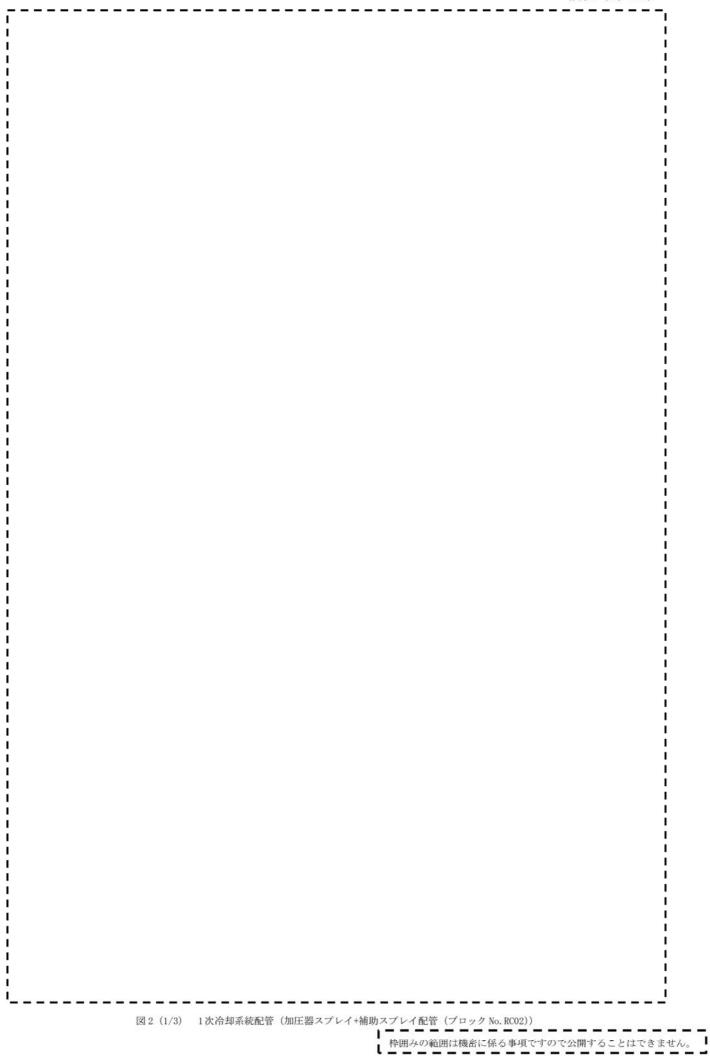
	原子炉格納 容器最高	最高使 用温度	伸縮継手 有効径	継手部の波の高さ	継手部の 波のピッチの	継手部の板の厚さ	伸縮継手 1個の	継手部の	材料	ヤング率	#3	式伸縮継手の (mm)	長さ
	使用圧力 (MPa)	(°C)	(mm)	(mm)	2分の1 (mm)	(mm)	山数	層数	3944	(MPa)	中心間距離	中間の管の長さ	伸縮継手の長さ
	Р					t	WN	-		E	A		
主蒸気配管 格納容器 貫通部	0.261	291	i					ľ	SUS304	176000	İ		
主給水配管 格納容器 貫通部	0.261	230						ļ	SUS304	180000	l 1		

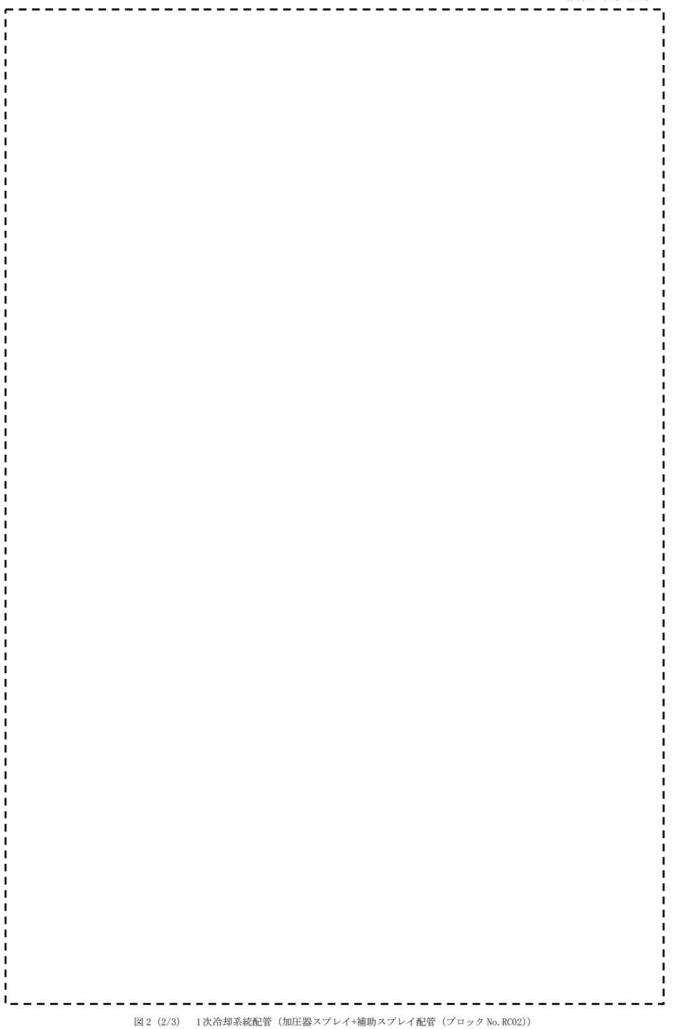
枠囲みの範囲はメーカー技術情報に係る事項ですので公開することはできません

美浜3号機 耐震補強工事 (配管関係)

機器名	補強箇所	サポート種別	補強内容	補強時期	ケース
1次冷却系 1次冷却系 1 1 1 1 1 1 1 1 1					

枠囲みの範囲は機密に係る事項ですので公開することはできません。

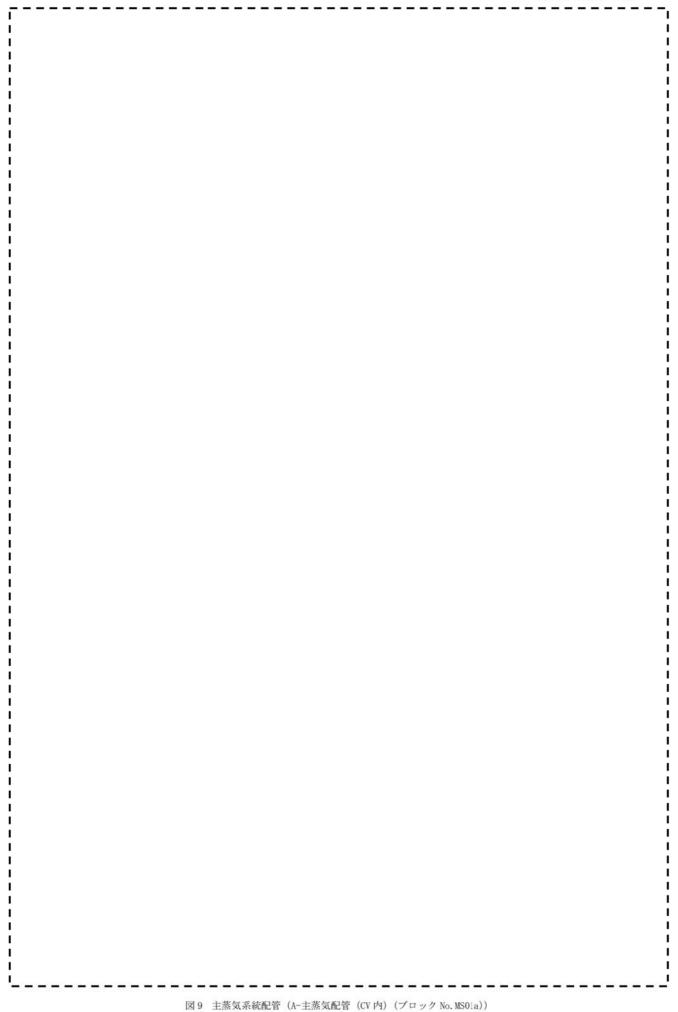

機器名	補強箇所	サポート種別	補強内容	補強時期	ケース
					I I I
					<u> </u>
					!
					I I [□]
余熱除去系 ↓ 統配管					į
					!
					<u> </u>
					-
					I p
少人 孙 1 五					-
安全注入系 統配管					I I


枠囲みの範囲は機密に係る事項ですので公開することはできません。


機器名	補強箇所	サポート種別	補強内容	補強時期	ケース
Ì					1
į					
į					:
į					<u> </u>
					į
ļ					i
ļ					I □
ļ					I I
上蒸気系統 己管					I I
					L
ļ					I I
ļ					I
					1
					I I
					I [□]
					!
Ĭ					!
Ĭ					!
					1

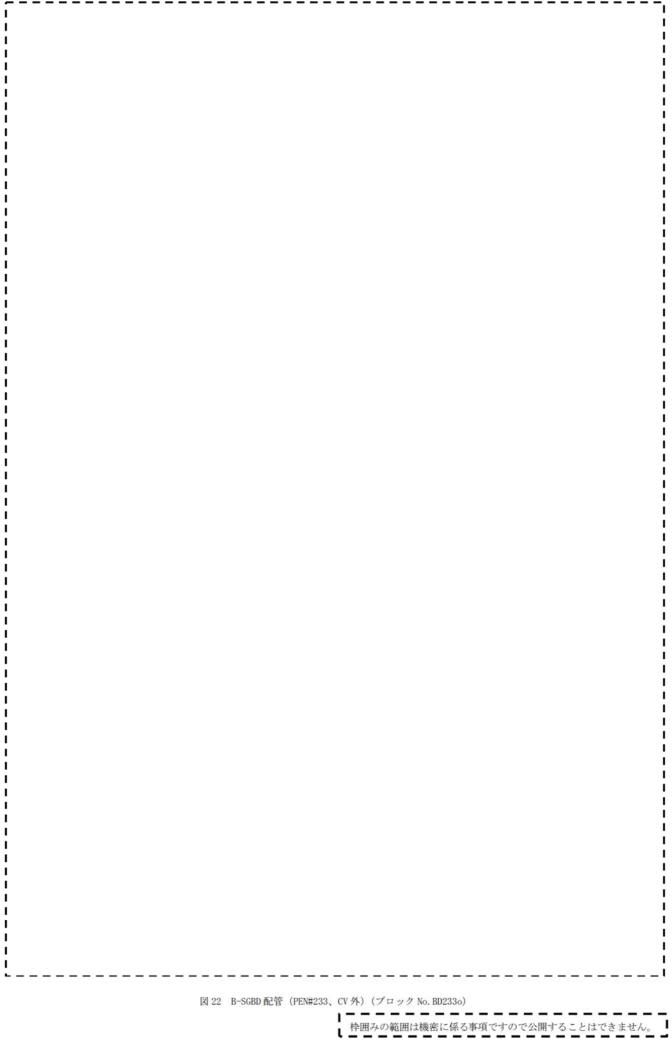
機器名	補強箇所	サポート種別	補強内容	補強時期	ケース
主給水系統配管					
SGブローダ ウン系統配 管					, n
化学体積制 御系統配管					_

枠囲みの範囲は機密に係る事項ですので公開することはできません。 ▮



11111

		 部173 (14/23)
		!
		i
		i
		i
		i
		ı
		Į.
		ı
		· ·
		ı
		ı
		Į.
		Į.
		I .
		Į.
		!
		!
		!
		!
		!
		!
		!
		!
		:
		:
		:
		:
		:
		:
		:
		:
		i
		i
		i
		i
		i
		i
		i
		i
		i
		i
		i
		i
		i
		i
		i
		i
		i
		i
		ı
		ı
		i
		I
		ı
		ı
		i
		i
		i
		ı
		ı
		I
		1
		i i
	PC土で幼和館 /D-全動除土カーラ出口和窓	
From 8 444		



1			i
I			i
1			ı
1			i
!			ı
1			i
1			i
!			ı
1			ı
I			i
I			i
1			i
I			i
I			i
I			i
I			i
I			i
I			i
I			i
I			i
I			i
I			i
I			i
I			i
I			i
I			;
I			
I			i
I			i
I			i
I			i
I			i
I			i
I			i
I			i
I			i
I			i
I			i
I			i
I			i
I			i
I			i
I			i
1			i
I			i
I			i
I			i
1			i
I			i
I			i
I			i
I			i
I			i
I			i
I			i
I			i
!			i
!			i
I .			i
I			i
1			i
1			i
!			i
!			i
!			i
!			i
!			i
!			i
!			i
!			i
!			i
!			i
!			i
	図 11 主蒸気系統配管 (C-主蒸気配	I答(CV は)(プロッカ No MCALo))	

o. MSO2b)) | 枠囲みの範囲は機密に係る事項ですので公開することはできません。

美浜3号炉-耐震-5

	,
タイトル	耐震Sクラス、耐震Bクラス及び耐震Cクラスの機器・配管に係る、比率で示された評価結果(疲れ累積係数を除く)に対する、各々の分子と分母の値(単位含む)について。
説明	耐震評価結果を比率で示したもののうち、耐震Sクラス、耐震Bクラス及び耐震Cクラスの機器・配管に対し、添付1の緑色セル内に、元となる「許容値」及び「発生値」を示す。 以 上

1998年 19	97.00	4	42 47 BB WH	中 。	40 年 公正事件	T/ 04 II/ 12		計震	発生値 許容値			疲労累積係数	
	域	마	飯幣名學	非代表設備	栓牛劣化事家	口。但是		重要度	_	No JEE	通常運転	地震時	中計
1998年 19	換器		1次系冷却水クーラ	和	内面腐食 (流れ加速型腐食)				ĺ	0.58			
Machine Registrate		A Art 20 Art 20	湿分分離加熱器		腐食(流れ加速型腐食)	胴板		O	_	0.25			
## 2000 198	- 10	岁 驷王丽	第1低圧給水ヒータ		腐食(流れ加速型腐食)	胴板		O		60.0			
第5位任格大工・学 開催日本機和品等 (※ 次 次 本 本 を を を を を を を を を を を を を	第2低圧給水ヒータ		腐食(流れ加速型腐食)	開板		O	_	0.34			
関与位任的水上・分 関連機能性保護的条 施設(流れ)加速型(設定) 開発 C C C C C C C C C C C C C C C C C C C			第3低圧給水ヒータ		腐食(流れ加速型腐食)	胴 板		O		0.28			
株式			第4低圧給水ヒータ		腐食(流れ加速型腐食)	胴板		C		0.29			
上海気系機配管		蒸気発生器	蒸気発生器		応力腐食割れ				_	0.93			
		ステンレス網配管	余熟除去系統配管		高サイクル熱疲労割れ (高低温水合流部)			_	_	0.44			
主義気系統配管 母管 協食(流れ加速型解食) 一次十二次 S COB (福岡森林派系統配管 母管 協食(流れ加速型解食) 一次十二次 S 123 (福岡森林派系統配管 母管 協食(流れ加速型解食) 一次十二次 S 130 第7世系統配管 母管 協食(流れ加速型解食) C 0.08 第5条柱配管 母管 競食(流れ加速型解食) C 0.08 第5条柱配管 母管 競食(流れ加速型解食) C 0.08 「レン系柱配管 母食(流れ加速型解食) 一次十二次 S S 「レン系柱配管 自食(流れ加速型解食) 一次十二次 S S 「レン系柱配管 協食(流れ加速型解食) 一次十二次 S S 「レン系柱配管 協食(流れ加速型解析) 一次十二次 <t< td=""><td>_</td><td></td><td></td><td></td><td></td><td></td><td>¥</td><td>2</td><td></td><td>0.95以下</td><td></td><td></td><td></td></t<>	_						¥	2		0.95以下			
上総大系統配管 母 管						<u>*</u>	7十二次		_	0.70以下			
上総水系統配管 日管 協食(流れ加速型腐食) 一次十二次 C C C C C C C C C			主蒸気系統配管	ğu.	腐食(流れ加速型腐食)	₹ —	¥			0.61			
上参水系統配管						<u>*</u> -	7+二次	ຄິ	_	1.23		0.134	
主格水系統配管 母管 腐食(流れ加速型腐食) 一次十二次 一次十二次 Sa 0.86 低温再熟悉気系統配管 母管 腐食(流れ加速型腐食) 一次十二次 一次十二次 C 0.03 第2曲気系統配管 母管 腐食(流れ加速型腐食) C 0.03 期間 第2曲気系統配管 母管 腐食(流れ加速型腐食) C 0.03 相助系表系統配管 母管 腐食(流れ加速型腐食) C 0.03 インド蒸気系統配管 母管 腐食(流れ加速型腐食) C 0.03 ドレン系系系統配管 母管 腐食(流れ加速型腐食) C 0.03 ドレン系系系統配管 母管 腐食(流れ加速型腐食) C 0.03 ドレン系系系統配管 母管 腐食(流れ加速型腐食) ~ 0.03 ボライン・ボル配管 腐食(流れ加速型腐食) ~ 0.03 ボルカ・ボーン S 0.03 ボルボーン S 0.03 ボート取付節 ボイ加速型腐食 ボルニン S ボート取付節 ボイの溶接筋等の ボルンドンデンアの溶接 0.03 デート取付節 デート取付節 デート取付り ボートンデーン・ボーン S ボート取付り デート取付り デートルフィー								ပ	_	0.86			
中音						2 –	¥	ű		0.86			
## 1				3		X-	7十二次		_	0.58			
#26 (主給水系統配管	gaa gaa	腐食(流れ加速型腐食)	X –	¥			08'0			
(6.25年						% —	7十二次	3	_	1.30		0.575	
(任道再熱蒸気系統配管 母音 腐食(流れ加速型腐食) C C C C C C C C C C C C C C C C C C C								ပ	_	0.59			
第2曲気系統配管 母管 腐食(流れ加速型腐食) C 003 第3曲気系統配管 母管 腐食(流れ加速型腐食) C 0.05 4年財系統配管 母管 腐食(流れ加速型腐食) C 0.07 4万ンド蒸気系統配管 母管 腐食(流れ加速型腐食) C 0.08 40ン系統配管 母管 腐食(流れ加速型腐食) C 0.08 ドレン系統配管 母管 腐食(流れ加速型腐食) C 0.08 系統配管 母管 腐食(流れ加速型腐食) C 0.08 系統配管 中管 腐食(流れ加速型腐食) C 0.08 系統配管 中管 腐食(流れ加速型腐食) C 0.08 系統配管 中管 腐食(流れ加速型腐食) C 0.08 不統配管 高食(流れ加速型腐食) -次+二次 S S 不統配管 高食(流れ加速型腐食) -次+二次 S S 不力力 本・中政付部 -次+二次 S S アンカー -次+二次 S S 0.04 アンレートの溶接部 -次+二次 S S 0.04		非未留配命	記管		腐食(流れ加速型腐食)			O	_	0.25			
第5曲気系統配管 母管 腐食(流れ加速型腐食) C 064 精和気系統配管 母管 腐食(流れ加速型腐食) C 0.077 様本系統配管 母管 腐食(流れ加速型腐食) C 0.087 様本系統配管 母管 腐食(流れ加速型腐食) C 0.076 素気発生器プローダウン 母管 腐食(流れ加速型腐食) -次 C 0.076 系統配管 A株配管 -次 S 1.35 不大統配管 -次 -次 S 0.76 アンカー 会管 原食(流れ加速型腐食) -次 C 0.07 系統配管 -次・アンートの溶検部等のサ ホー・取付部 -次・アンートの溶検部等のサ ・ボー・取付的 -次・アンートの溶検部等のサ ・ブ・ナーン 会 0.04 アンカー -次・アンートの溶検部等のサ ・ボーン -次・アンートの溶検部 -次・アンートの溶検 -次・アンートの溶液 -次・アンートの溶液 -次・アンートの溶液 -次・アンートの溶液 -次・アントニン・アンートの溶液 -次・アンートのののののののののののののののののののののののののののののののののののの	_				腐食(流れ加速型腐食)			C		0.03			
第4曲気系統配管 母管 腐食(流れ加速型腐食) C 0.64 0.64 横助蒸気系統配管 母管 腐食(流れ加速型腐食) C 0.77 0.86 0.77 ドレン系統配管 母管 腐食(流れ加速型腐食) 一次 C 0.76 0.74 素気発生器プローダウン 母管 腐食(流れ加速型腐食) 一次 C 0.76 0.76 系統配管 系統配管 一次 S S 1.35 0.76 アンカー 東学園(流れ加速型腐食) 「次キニ次」 S S 0.76 0.76 アンカー 東学園(流れ加速型腐食) 「次キニ次」 S S 0.76 0.76 アンカー 東学園(流れ加速型腐食) 「次キニ次」 S S 0.76 0.76 アンカー 東子山(中) 東学園(流れ加速型腐食) 「次キニ次」 S S 0.06 0.76 アンカー 東沙山(中) 東沙山(中) 「次・ドンカー 「次・ドンカー 「次・ドンカー 0.06 0.04 0.04 アンカー 「カードンカー 「次・ドンカー 「次・ドンカー 「次・ドンナー 0.04 0.04 0.04 0.04 0.04			3		腐食(流れ加速型腐食)			C	_	0.55			
補助蒸気系統配管 母管 腐食(流れ加速型腐食) C 0.77 0.86 C 0.77 C 0.87 C 0.86 C 0.87 C 0.87 C 0.87 C 0.87 C 0.87 C 0.78 D 0.78 D 0.78 D 0.78 <			600		腐食(流れ加速型腐食)			C		0.64			
グランド蒸気系統配管 母音 腐食(流れ加速型腐食) C 0.86 0.86 様人系統配管 母音 腐食(流れ加速型腐食) 一次 C 0.78 C 素気発生器プローダウン 母音 腐食(流れ加速型腐食) 一次 C 0.74 C 系統配管 表統配管 一次 一次 C S C 0.74 不統配管 表統配管 一次 一次 C S S C 0.14 C アンカー 表示に取付部 表別的れ ボッドとララの溶接 一次 S S S C 0.04 C <td></td> <td></td> <td>v</td> <td></td> <td>腐食(流れ加速型腐食)</td> <td></td> <td></td> <td>C</td> <td></td> <td>0.77</td> <td></td> <td></td> <td></td>			v		腐食(流れ加速型腐食)			C		0.77			
(後水系統配管 母音 腐食(流れ加速型腐食) C C C C C C C C C C C C C C C C C C C					腐食(流れ加速型腐食)			C		98'0			
ドレン系統配管 母管 腐食(流れ加速型腐食) 一次 C 0.76 C 蒸気発生器プローダウン 母管 腐食(流れ加速型腐食) 一次+二次 一次+二次 S S 1.35 C 0.74 C					腐食(流れ加速型腐食)			ပ		0.87			
蒸気発生器プローダウン 中管 麻食 (流れ加速型腐食) 一次+二次 S S S S S S S S S S S S S S S S S S S					腐食(流れ加速型腐食)			S	_	0.76			
蒸気発生器プローダウン 中管 厳食 (流れ加速型腐食) 一次 + 二次			00 mm 10 mm			一次	~	3	_	0.74			
系統配管 中間 本大ーングートの溶接部等のサークス・トンカー 一次十二次 S S 1.35 アンカー オート取付部 本分子ントトの溶接部等のサークス・トンク溶接のサークス・トンクの溶接のサークス・トンクの溶接のサークス・トンカー カイントントンクルトの溶接のサークス・トンカー・カイーング・トンカー カインカー・カイーング・トンカー・カイーング・カイーング・トンカー・カイーング・			蒸気発生器ブローダウン	中	仮会(味とたる)	<u> </u>	7十二次		_	0.97以下			
1.35			系統配管	o t	国及、川はら川沿田田田	※ −	.,		_	0.75			
記憶とパッドの溶接部等のサ						<u>一</u> 次	7十二次	ŝ	_	1,35		0.090	
アンカー ボッドとラゲの溶接部 ボッドとラゲの溶接部 ボット取付部 ラグとブレートの溶接 ボット エ次 エンカー ラグとブレートの溶接 ボット エ次 コンカー						_	γ :		_	0.14			
アンカー カンカー 本学的な報告 本学 (マンカー) 本学 (マンカー) 本学 (マンカー) A (マンカー) </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>Ж—</td> <td>χ+=%</td> <td>4</td> <td>•</td> <td>0.13</td> <td></td> <td></td> <td></td>						Ж —	χ+=%	4	•	0.13			
コゲとブレートの 当がとブレートの 部 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	,	配管サポート	アンカー		疲労割れ		۸ ۲ – ۲		_	0.05			T
S Ss ——次十二次				di Civici di		+	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	+	_	0.00			
						_	7十二次		_	0.04			

[]内は水平2方向および鉛直地震力の組合わせによる影響評価結果

松	마	版部名称		な子子の中が		•							
			非代表設備	は十分に中外	Arda wrta	74	重要度	(MPa)	a) (MPa)	м ли	通常運転	地震時	雪
			炉心そう	中性子照射による靭性低 下			S			0.16			
		炉内構造物	パッフルフォーマボルト	照射誘起型応力腐食割れ			S	ω		0.40			
П			炉内計装用シンブルチューブ	摩耗	炉内計装用シンブル チューブ		S			0.03			
		高圧タービン	主蒸気入口管		主蒸気入口管		ပ			0.51			
			凝縮器伝熱管	内面腐食(流れ加速型腐 、 食)	凝縮器伝熱管		၁	_		0.21			
空調設備 冷凍機		チフーユニント	配管		記管		ပ	_ _		0.22			
			冷水サージタンク		冷水サージタンク		ပ	- 7		0.16			
機械設備		原子炉容器サポート	サポートブラケット	中性子およびィ線照射脱	補強材		s S	<u></u>		0.32			
					ボルト		S	S		0.21			
重機器サポート	22	蒸気発生器サポート(支 は脚)	にジ指動部	摩耗	蒸気発生器支持脚	- 汝	S	v)		[0.37]			
	ė	1寸四/				一次十二次		_		[0.91]			
		1次冷却材ポンプサポー	に い 指動部	摩耗	1次冷却材ポンプ支持	一次	S	· ·		0.04			
		_			E.	- 次十二次	4	_		0.24			
20条 T 统计	590	格納容器外制御用空気	格納容器外制御用空気だめ 等(格納容器外制御用空気だ _商	(全国图像	計器用空気圧縮機 空気だめ		S			0.25			
		圧縮装置	め、格納容器外制御用空気乾燥器)		計器用空気乾燥器 吸着塔		S	- -		0.14			
非核燃料	非核燃料炉心構成品	制御棒クラスタ	被覆管	摩耗	被覆管		S	<u>ر</u>		0.55			
15 m 10 m				応力腐食割れ	廃液蒸発装置 伝熱管		_	_		90.0			
演档或各段铺		院汝然光表直	胴板等(蒸発器、加熱器、濃 縮液ポンプ、配管)	応力腐食割れ	廃液蒸発装置 蒸発器胴板		В	_		0.17			
基礎ボルト	÷		-			引張荷重		_		0.65			
		容器	燃料収容用水ダンク		基礎不ルト	せん断荷重	S S	<u> </u>		0.36			
			復水タンク	臨食	•	引張荷重 せん断荷重	s	w		0.60			
		主蒸気系統配管	配管用基礎ボルト	腐食(全面腐食)	基礎ポルト M30X8(本)	引張荷重	S	ø		0.38			
電源設備 非常用ディ 付属設備		清水クーラ	(伝熱管		伝熱管		S Ss	-D 6		0.23以下			
非常用产付属設備	非常用ディーゼル機関 付属設備(熱交換器)	燃料弁冷却水クーラ	伝熱管		伝熱管		S S S	D G		0.05以下			
非常用デ	非常用ディーゼル機関	空気冷却器	伝熱管	内面からの腐食 (流れ加速型腐食)	伝熱管		S S	-D 6		0.22以下			

[]内は水平2方向および鉛直地震力の組合わせによる影響評価結果

美浜3号炉-耐震-8 Rev1

タイトル

高経年化対策上着目すべきでない経年劣化事象において、ステンレス配管母管の内面からの応力腐食割れを、耐震安全上考慮する必要が無い経年 劣化事象として抽出する根拠について。

説明

ステンレス鋼配管母管の内面については、1次系水質環境下においても 局所的に溶存酸素濃度が高くなる等の理由で内面からの応力腐食割れが発 生する可能性は否定できない。

しかしながら、高温かつ溶存酸素濃度が高くなる可能性のある範囲の溶接部については、SUS304系から耐応力腐食割れ性に優れているSUS316系に取替を完了しており、応力腐食割れの可能性は小さい。

さらに、供用期間中検査時に超音波探傷試験を実施して有意な欠陥がないことを確認するとともに、漏えい検査により機器の健全性を維持している。

したがって、今後も現状保全で管理される程度の範囲の進行では固有振動数の変化および断面減少による応力増加への影響は軽微であることから、耐震安全性に影響を与えるものではないとしている。

PLM30での高経年化技術評価内容は以下のとおり。

<PLM30での評価>

[余熱除去系統配管]

通常運転時に使用されず閉塞滞留部となり溶存酸素濃度が高くなる可能性があり、かつ、1次冷却材の流れの影響により高温となる可能性のある部位については、応力腐食割れ発生の可能性は否定できない。

ただし、当該部位については、SUS304系より耐応力腐食割れ性が優れているSUS316系を使用している。

健全性評価結果から判断して、母管の内面からの応力腐食割れ発生の可能性は、小さいと考えるが否定できないため、高温で溶存酸素濃度が高くなる可能性がある部分について、溶接部を対象とした超音波探傷検査を実施していく。

[化学体積制御系統配管、安全注入系統配管]

高経年化に当たっては、応力腐食割れ発生の可能性は否定できない。 したがって、高温で溶存酸素濃度が高くなる可能性がある部分につい て、代表部位の溶接部を対象とした超音波探傷検査を実施していく。

《参考》美浜3号機 О2SСС対象配管の取替え実績

対象ライン	系 統	実施時期	対 策
加圧器スプレイライン	RCS	①、⑤	I
加圧器補助スプレイライン	RCS	5	I 、 II-1
加圧器スプレイバイパスライン	RCS	2	I
加圧器下部水位計ライン	RCS	1	I
RCS冷却材ドレンライン	RCS	2,4	I
SIS蓄圧注入ライン	SIS	4	I
SIS安全注入ライン	SIS	5	I 、 II-1
抽出ライン	CVCS	3, 4	I
充てんライン	CVCS	3,4	I
充てん待機ライン	CVCS	5	II -2

〈系 統〉

RCS: 1 次冷却系統 (Reactor Coolant System)

CVCS:化学体積制御系統 (Chemical and Volume Control System)

SIS:安全注入系統 (Safety Injection System)

〈実施時期〉

①第17回:平成11年4月~6月 ②第18回:平成12年7月~10月 ③第19回:平成14年1月~3月

④第21回:平成16年8月~平成19年2月

⑤第25回:平成23年5月~

※⑤はPLM30後の対策(黄色ハッチング)

〈対策〉

I : SUS304SW (ソケット溶接) →SUS316BW (突合せ溶接) への取替 II-1: SUS304BW (突合せ溶接) →SUS316BW (突合せ溶接) への取替

Ⅱ-2: SUS304BW (突合せ溶接) 配管の撤去

〈美浜3号機データ〉

・ 運開30年 平成18年11月30日

· PLM30認可 平成18年7月27日

以上

関西電力株式会社

事象:耐震(容器)

美浜3号炉-耐震-12

タイトル

主蒸気系統伸縮継手及び主給水系統伸縮継手の疲労割れに対する評価の 具体的内容(評価仕様、解析モデル、入力(荷重)条件、評価結果を含む) について。

1. 記号の説明

回答

伸縮継手の疲労評価に用いる記号について、表1に示す。

表1 伸縮継手の疲労評価に用いる記号

記号	単位	定義
b	mm	継手部の波のピッチの2分の1
c	-	継手部の層数
d P	mm	継手部の有効径 (平均径)
E	MPa	最高使用温度におけるJSME S NC1-2005/2007付録図表Part6表1に規定する材料の縦弾性係数
e	mm	継手部の1山当たりの総変位量
ех	mm	軸方向変位による継手部の1山当たりの変位量
еу	mm	軸直角方向変位による継手部の1山当たりの変位量
h	mm	継手部の波の高さ
L	mm	継手部の有効長さ
l	mm	中間の管の長さ
N	_	許容繰返し回数
n	-	継手部の全山数
P	MPa	最高使用圧力
t	mm	継手部の板の厚さ
U	_	疲れ係数
UF	_	疲れ累積係数
W_N	_	1 個の継手部の山数
X	mm	軸方向変位量 (表 3 におけるXの 2 倍(両振幅))
Y	mm	軸直角方向変位量 (表 3 における δ y=√ (y^2+z^2) の 2 倍(両振幅))
δ	mm	全伸縮量
σ	MPa	合計応力
σр	MPa	全伸縮量による応力
σР	MPa	最高使用圧力による応力

伸縮継手の基本寸法箇所を図1に示す。

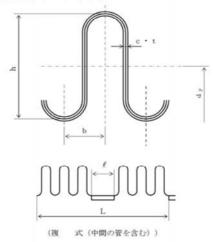


図1 伸縮継手の基本寸法箇所

2. 評価部位

評価する伸縮継手は、技術評価で厳しい系統とし、主蒸気配管はCループ(改造なし)、主給水配管はCループ(改造なし)とする。図2にC-主蒸気配管、C-主給水配管の伸縮継手の模式図を示す。

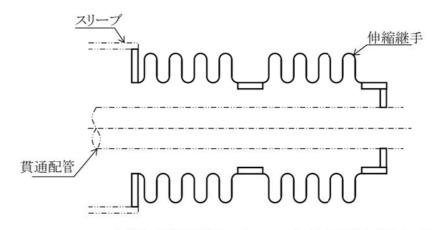


図2 C-主蒸気配管(改造なし)、C-主給水配管(改造なし)

評価部位は、図3に示す伸縮継手の頂部とします。

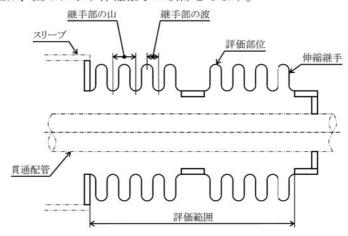


図3 伸縮継手の評価部位

3. 評価内容

(1) 格納容器貫通部の仕様

各格納容器貫通部の仕様について表 2 に示します。

100	原子炉格納 容器最高	最高使 用温度	仲総継手 有効径	継手部の 波の高さ	鞭手部の 波のピッチの	継手部の 板の厚さ	伸縮継手 1個の	継手部の	45.81	ヤング車	١ '	を式体設額手の (mm)	E3
	使用圧力 (MPa)	(°C)	(mm)	(mm)	2分の1 (mm)	(mm)	山敷		(MPa)	中心間 距離	中間の管の長き	伸縮維引 の長さ	
	Р		d,	h	b	t	Ww	0		ŧ	A.	ŧ	L
主蒸気配管 格納容器 貫通部	0261	291		_			-	<u>-</u>	SUS304	176000	<u> </u>		_
給水配管	0261	230							SUS304	180000	ı		

表 2 格納容器貫通部の仕様

▶ 枠囲みの範囲はメーカー技術情報に係る事項ですので公開することはできません

(2) 地震時の伸縮継手の変位

Ss地震時及びSd地震時の伸縮継手の変位について表3に示す。

表 3-1 伸縮継手の変位 (Ss地震時)

ニノンタか	地震合計変位(mm)						
ライン名称	X	Y	Z	$\delta y = \sqrt{(Y^2 + Z^2)}$			
主蒸気配管格納容器 貫通部	20. 0	14.7	2. 7	15. 0			
主給水配管格納容器 貫通部	26. 3	13. 3	3. 4	13.8			

表 3-2 伸縮継手の変位 (Sd地震時)

コノンタサ	地震合計変位 (mm)						
ライン名称	X	Y	Z	$\delta y = \sqrt{(Y^2 + Z^2)}$			
主蒸気配管格納容器 貫通部	11.9	7. 2	1. 5	7. 4			
主給水配管格納容器 貫通部	13. 9	7. 3	1.8	7.6			

注:表3に示す座標系は、格納容器半径方向をx方向、鉛直方向をz方向と する右手直行座標系であり、表1に示すX、Yとは異なるものである。

(3) 疲れ累積係数 (UF) の算出

地震時の伸縮継手の変位から発生応力を算出し許容繰返し回数を求め、評価用繰返し回数と許容繰返し回数の比(疲れ累積係数)を算出す(日本機械学会 設計・建設規格「PVE-3800 伸縮継手」参照)。

a. 伸縮継手の変位

(a) 軸方向変位による継手部の1山当たりの変位量

$$e_x = \frac{X}{2W_N}$$

(b) 軸直角方向変位による継手部の1山当たりの変位量

$$e_y \! = \! \frac{3 \, d_P Y}{2 W_N \! \left\{ \! L \! + \! \ell \! \! \left(\! \frac{\ell}{L} \! + \! 1 \! \right) \! \! \right\}}$$

(c)継手部の1山当たりの総変位量

$$e = e_x + e_y$$

(d) 伸縮継手の全伸縮量

$$\delta = e W_N$$

b. 伸縮継手の応力と許容繰返し回数

(a) 伸縮継手の応力

全伸縮量による応力

$$\sigma_D = \frac{1.5 E t \delta}{n \sqrt{b h^3}}$$

注:ヤング率Eについては、表2における 高温時の値ではなく、常温 (21℃) に おけるヤング率195,000(MPa)を用いる。

最高使用圧力による応力

$$\sigma_{P} = \frac{P h^2}{2 t^2 c}$$

発生応力

$$\sigma = \sigma_D + \sigma_P$$

(b) 許容繰返し回数

$$N = \left(\frac{11031}{\sigma}\right)^{3.5}$$

(c)疲れ累積係数

$$UF = \Sigma$$
 評価用繰返し回数
許容繰返し回数

4. 評価結果

(1)地震によるUF評価結果

Ss地震によるUF評価結果を、表4に示す。

表 4 Ss地震によるUF評価結果

	A T OSPEREN	THILL TO C. 4-	ルロント	
格納容器貫通部	発生応力 [MPa]	許容繰返し 回数	評価繰返し 回数	UF
主蒸気ライン貫通部	2081	343	200	0. 584
主給水ライン貫通部	1585	890	200	0. 225

Sd地震によるUF評価結果を、表5に示す。

表 5 Sd地震によるUF評価結果

格納容器貫通部	発生応力 [MPa]	許容繰返し 回数	評価繰返し 回数	UF
主蒸気ライン貫通部	1113	3069	300	0. 098
主給水ライン貫通部	908	6272	300	0.048

(2) 通常運転時UFとの組合せによる評価結果 通常運転時のUFを加えた結果を表6及び表7に示す。

表6 Ss地震時の通常運転時UFとの組合せによる評価結果

格納容器貫通部	通常運転時	Ss地震時	合計
主蒸気ライン貫通部	0.005	0. 584	0. 589
主給水ライン貫通部	0.010	0. 225	0. 235

表7 Sd地震時の通常運転時UFとの組合せによる評価結果

格納容器貫通部	通常運転時	Sd地震時	合計
主蒸気ライン貫通部	0.005	0.098	0. 103
主給水ライン貫通部	0. 010	0. 048	0. 058

以上より、主蒸気系統伸縮継手及び主給水系統伸縮継手の疲労割れに対する 耐震安全性に問題はない。

以上

関西電力株式会社 事象:耐震(配管)

美浜3号炉-耐震-16

タイトル

母管の内面からの腐食(流れ加速型腐食)に対する耐震安全性評価について

説明

1. 評価対象ラインの抽出について

美浜3号炉の劣化状況評価における「母管の内面からの腐食(流れ加速型腐食)」に対する耐震安全性評価は、発電用原子力設備規格加圧水型原子力発電所配管減肉管理に関する技術規格(以下「技術規格」という。)等を踏まえて策定した当社の管理指針「2次系配管肉厚の管理指針」に規定する検査対象系統を基に、評価対象ラインを選定し、耐震安全性評価を実施している。選定フローを添付1に示す。

2. 評価対象ライン数

その結果、評価対象として抽出され評価を行ったライン数は、系統分類毎にそれぞれ以下の通り。

主蒸気系統配管: 7ライン

低温再熱蒸気系統配管:1ライン

第2抽気系統配管:1ライン

第3抽気系統配管:1ライン

第4抽気系統配管:3ライン

主給水系統配管:11ライン

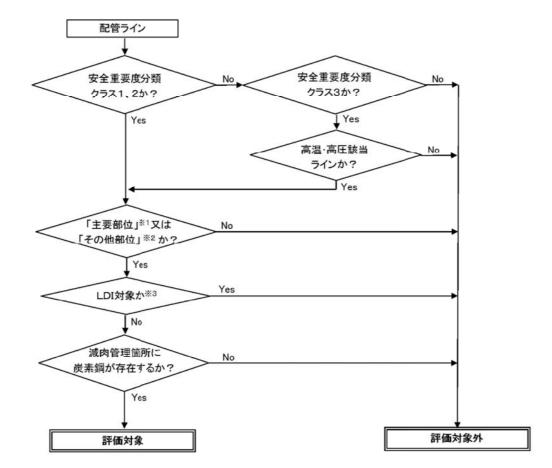
復水系統配管: 7ライン

ドレン系統配管:26ライン

補助蒸気系統配管:2ライン

グランド蒸気系統配管:1ライン

蒸気発生器ブローダウン系統配管:3ライン


3. 評価結果

各評価仕様〔各評価用地震、想定減肉(必要最小肉厚or実測データ)、解析手法(梁モデル解析or F E M解析)〕とともに、各ラインの評価結果を添付2に示す。

4. 評価モデル

評価対象ラインのうち、劣化状況評価書に厳しいラインとして代表で 記載した応力比の、対象箇所を含む解析モデル図を添付3に示す。

以 上

配管内面からの腐食(流れ加速型腐食)評価対象ラインの抽出フロー

- ※1:当社社内指針「2次系配管肉厚の管理指針」において、減肉が発生する可能性があるとし 点検対象として選定している部位(「発電用原子力設備規格加圧水型原子力発電所配管減 肉管理に関する技術規格」の流れ加速型腐食(FAC)による試験対象系統、液滴衝撃エ ロージョン(LDI)による試験対象系統の試験対象箇所にあたる部位
- ※2:当社社内指針「2次系配管肉厚の管理指針」において、2次系冷却水が常時流れる系統の うち主要部位に該当しない偏流発生部位
- ※3:液滴衝撃エロージョン (LDI) については、減肉が発生したとしても局所的であり、応答 特性・強度に影響がないことから対象外とし、流れ加速型腐食 (FAC) のみを耐震評価 対象としているもの

美浜3号機 PLM40耐震評価 流れ加速型腐食に対する配管評価結果一覧

						:	全箇所tsr	Eデル			
系統分類	耐震	配管名称	評	面用地震	梁	モデル評価	40		FEM評価		
	クラス				応力値/ 許容応力	応力比	評価	応力値/ 許容応力		評価	
	С	湿分分離加熱器加熱蒸気管		С		1.08	×		0.86	0	
				1次		0.81	0				
		A + # (A (A (A (A (A (A (A (A	Sd	1次+2次		0.45	0		-		
	S	A一主蒸気配管 (CV内)		1次		0.61	0		Med		
			Ss	1次+2次		0.99	0		-		
			0.1	1次	ļ l	0.77	0				
		D 计基本系统 (0)(内)	Sd	1次+2次		0.41	0				
	S	B-主蒸気配管(CV内)	Ss	1次	Ì	0.57	0.57 O	200			
			SS	1次+2次		0.82	0		-		
				1次		0.79	0				
		o +#### (out)	Sd	1次+2次		0.41	0				
	S	C一主蒸気配管 (CV内)	0-	1次		0.58	0				
			Ss		1	0.84	0				
主蒸気系統				1次		0.95以下	0				
			Sd	1次+2次		0.70以下	0	-			
	S	A一主蒸気配管 (CV外)	_	1次		0.48	0		190		
			Ss	1次+2次	i i	0.70	0	-			
			64	1次		0.85	0				
			Sd	1次+2次		0.57	0		-		
	S	B-主蒸気配管 (CV外)		1次		0.54	0				
			Ss	1次+2次	LI	1.23	×		-		
				1次+2次	UF:	0.134	0				
			Sd	1次		0.79	0				
			30	1次+2次		0.48	0		177.5		
	S	C-主蒸気配管 (CV外)		1次		0.52	0				
			Ss	1次+2次		1.03	×		-		
				1次+2次	UF:	0.012	0				

評価書に記載した系統毎の代表設備及びその評価結果

美浜3号機 PLM40耐震評価 流れ加速型腐食に対する配管評価結果一覧

							全箇所tsr	モデル		
系統分類	耐震	配管名称	常平 4	面用地震	粱	モデル評価	計画 応力値 / 許容応力 応力比 応力比 下方値 / 許容応力 応力比 下方値 / 許容応力 応力比 下方値 / 許容応力 応力比 下方値 / 下方位 /			
71.407 X	クラス			ann-oux	応力値/ 許容応力	応力比	評価		応力比	評価
低温再熱蒸気系統	С	低温再熱蒸気配管(高圧排気管)		С		0.25	0		74	
第2抽気系統	С	第2抽気管		С		0.03	0		- 2	
第3抽気系統	С	第3抽気管		С		0.55	0		-	
	С	第4抽気管(A)		С		0.33	0		-	
第4抽気系統	С	第4抽気管(B)		С		0.37	0	19		
	С	第4抽気管(C)		С		0.64	0	-		
	С	給水ブースタポンプ吸込管(A)		С		1.08	×		0.59	0
	С	給水ブースタポンプ吸込管(B)		С	- 1	0.99	0		- 1	
	С	給水ブースタポンプ吸込管(C)		С		0.78	0	12		
	С	主給水ポンプ~第6高圧給水加熱器		С	1	0.31	0	12		
	С	第6高圧給水加熱器~神船取合い	1	С	1	0.44	0		-	
			Sd	1次	1	0.57	0			
	s	A-主給水配管 (CV内)	- 00	1次+2次	ì	0.34				
			Ss	1次 1次 1次+2次		0.58		1	-	
				1次		0.71				
	s	B-主給水配管 (CV内)	Sd	1次+2次		0.49	0		1.7.	
	3	B-主紹介配管 (CVM)	Ss	1次		0.72	0		-	
			03	1次+2次		0.96				
+ + A + 7 + +			Sd	1次		0.69		1		
主給水系統			- 00	1次+2次		0.47				
	S	C-主給水配管 (CV内)	3383	1次		0.74		-		
			Ss	1次+2次	UF:0.	1.01		-	-5	
			-	1次+2次		0.72				
			Sd	1次+2次		0.45		1	-	
	S	A一主給水配管 (CV外)	7536	1次		0.62				
			Ss	1次+2次		0.85		1	-	
				1次		0.61				
			Sd	1次+2次		0.58	0	1	-	
	s	B-主給水配管 (CV外)		1次		0.50	0			
		W-100.00	Ss	12tr.oxt		1.30	×		-	
				1次+2次	UF:0.	463	0			
			Sd	1次	I	0.86	0			
	s	C-主給水配管 (CV外)	50	1次+2次		0.49	0		14.771	
	8	〇 工和小配督 (GV7F)	Ss	1次		0.80	0		-2	
			os	1次+2次	<u> </u>	0.98	0			

評価書に記載した系統毎の代表設備及びその評価結果

美浜3号機 PLM40耐震評価 流れ加速型腐食に対する配管評価結果一覧

						全箇所	tsrモデル		
系統分類	新度	FEM評価							
	777		地展		応力比	評価		応力比 - - - - - - - - - -	評価
	С		С		0.53	0		FEM評価 値/ 応力比 - - - - - - - - - - - - -	
	С	第1低圧給水加熱器~第2低圧給水加熱器(A)	С		0.28	0		-	
	С	第1低圧給水加熱器~第2低圧給水加熱器(B)	С	ļ	0.28	0	-		
復水系統	С	第1低圧給水加熱器~第2低圧給水加熱器(C)	С		0.28	0		-	
	С	第2低圧給水加熱器~第3低圧給水加熱器(A)	С		0.42	0		-	
	С	第2低圧給水加熱器~第3低圧給水加熱器(B)	С	i	0.75	0		-	
	С	第2低圧給水加熱器~第3低圧給水加熱器(C)	С	l	0.87	0			
	С	第6高圧給水加熱器ドレン管(A)(常用)	С	l	1.08	×		0.76	0
	С	第6高圧給水加熱器ドレン管(B)(常用)	С		0.81	0		-	
	С	第4低圧給水加熱器ドレン管(A)	С		0.44	0		-	
	С	第4低圧給水加熱器ドレン管(B)	С		0.50	0		-	
	С	第4低圧給水加熱器ドレン管(C)	С	l j	0.44	0		-	
ドレン系統	С	第3低圧給水加熱器ドレン管(A)(常用)	С		0.66	0		-	
	С	第3低圧給水加熱器ドレン管(B)(常用)	С		0.69	0		-	
	С	第3低圧給水加熱器ドレン管(C)(常用)	С		0.97	0		-	
	С	低圧給水加熱器ドレンポンプ吐出管(A)	С		0.53	0		-	
	С	低圧給水加熱器ドレンポンプ吐出管(B)	С		0.51	0		-	

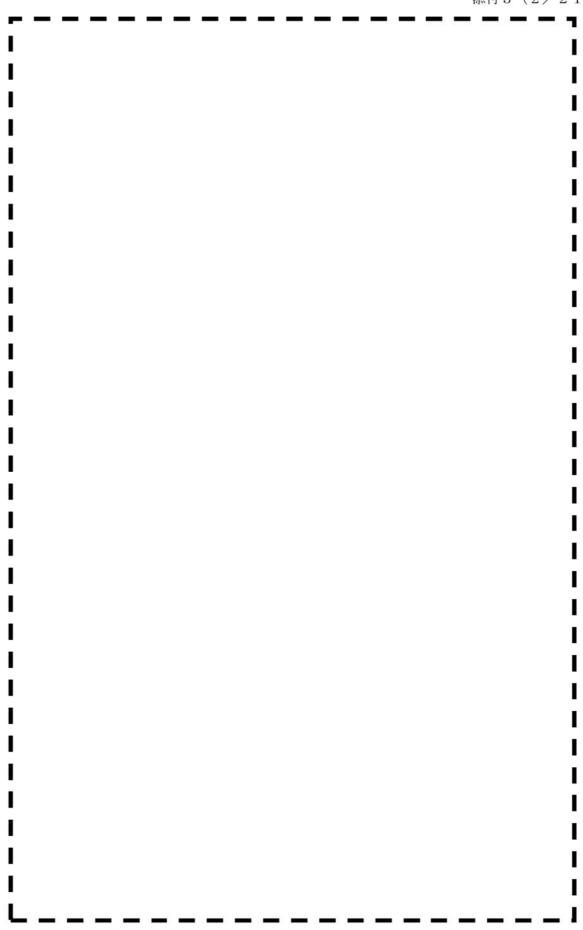
評価書に記載した系統毎の代表設備及びその評価結果

美浜3号機 PLM40耐震評価 流れ加速型腐食に対する配管評価結果一覧

						全箇所	tsrモデル		
系統分類	耐震クラス	配管名称	配管名称	FEM評価					
	992		地展		応力比	評価		応力比	評価
	С	低圧給水加熱器ドレンポンプ吐出管(C)	С		0.39	0		-	
	С	湿分分離加熱器ドレン管(1A)	С	i	0.40	0		-	
	С	湿分分離加熱器ドレン管(2A)	С	i	0.39	0	-		
	С	湿分分離加熱器ドレン管(3A)	С	ļ	0.54	0		-	
	С	湿分分離加熱器ドレン管(1B)	С	!	0.38	0	-		
	С	湿分分離加熱器ドレン管(2B)	С		0.41	0		-	
	С	湿分分離加熱器ドレン管(3B)	С		0.46	0		-	
(*) > で 4+	С	湿分分離加熱器ドレンタンクドレン管(A, B) (常用)	С		0.91	0		-	
ドレン系統	С	湿分分離器ドレン管(IA)	С	i	0.26	0		-	
	С	湿分分離器ドレン管(2A)	С		0.23	0		-	
	С	湿分分離器ドレン管(3A)	С		0.28	0		-	
	С	湿分分離器ドレン管(IB)	С	ļ	0.38	0		-	
	С	湿分分離器ドレン管(2B)	С		0.69	0		-	
	С	湿分分離器ドレン管(3B)	С		0.53	0		-	
	С	湿分分離器ドレンポンプ吸込管(常用)	С		0.99	٥		-	
	С	湿分分離器ドレンポンプ吐出管	С		1.22	×		0.49	0

評価書に記載した系統毎の代表設備及びその評価結果

美浜3号機 PLM40耐震評価 流れ加速型腐食に対する配管評価結果一覧


						全	箇所tsrモデ	ル														
系統分類	耐震クラス	配管名称	評価用地震		梁=		FEM評価															
	777				応力値/ 許容応力	応力比	評価	応力値/ 許容応力	応力比	評価												
グランド蒸気系統	С	グランド蒸気管		С		0.86	0															
補助蒸気系統	С	スチームコンバータ加熱蒸気管 第6抽気ライン(第6抽気管~ス チームコンパータ)		c I		0.77	0		-													
	С	スチームコンバータドレン管	С			0.43	0		-													
			Sd	1次		0.48以下	0		_													
	S	AループSGBD配管 PEN#279CV外	Su	1次+2		0.97以下	0	1		J												
	3	PEN#2/9CV外 CVBD内	Ss	1次		0.24	0															
			38	1次+2 次		0.97	0		3.72													
	s	AループSGBD配管 PEN#279CV外 CVBD外	Sd	12/2		0.67以下	0		_													
			Su	7次+2		0.27以下	0															
			Ss	1次		0.35	0	-														
			os	1次+2 次	·	0.27	0															
[Sd	1次		0.43	0		_													
	s	BループSGBD配管 PEN#233CV外	Su	1次+2 次		0.43	0															
	5	CVBD内	Ç-	1次		0.26	0															
			Ss	1次+2		0.89	0	1	-													
蒸気発生器 ブローダウン系統	s															1次		0.74	0			
) -) /) / (i) /		BループSGBD配管	Sd	1次+2 次		0.61	0		-													
		S		PEN#233CV9\		1次		0.75	0													
		CVBD外	Ss	1次+2		1.35	×		-													
				次 1次+2 次	UF:0.0	90	0															
			٥.	1次		0.49以下	0															
		CループSGBD配管	Sd	1次+2 次		0.87以下	0	1	-													
	S	PEN#230CV外 CVBD内		1次		0.25	0															
			Ss	1次+2 次	i	0.87	0	1	-													
			٥.	1次	'	0.60以下	0															
		CループSGBD配管	Sd	1次+2 次		0.34以下	0	1	-													
	S	PEN#230CV外 CVBD外		1次		0.3	0															
			Ss	1次+2 次	1	0.34	0	1	-													

評価書に記載した系統毎の代表設備及びその評価結 ※1:断続運転評価では、各系統について、CVBD内(Sクラス) およびCVBD外(Cクラス)の評価を行っている。 ※2:Cクラス範囲については、保守的にSクラスと同等の評価を行っている。

添付:	2 (1	19	1
13/1/1 6) (T	1 4	1 /

主蒸気系統配管(湿分分離器加熱蒸気管)

ı

主蒸気系統配管(A-主蒸気配管(CV内)) 【Ss地震】

1)
	1

【Sd地震
$\widehat{}$
(CV外)
受
主蒸気配
(A一主
統配管
河米
:蒸気;
111

			添付3 (4/21)	
1 1				
i			i	
!			!	
i			i	
I			ĺ	
 			!	
i			i	
!			1	
! !			:	
i			i	
!			!	that
;			i	Ss地震
I			1	SS
! !			1	<u> </u>
i			i	(CV外))
!			Į.	(CV
¦			i	(B-主蒸気配管
i			i	蒸气
!			!	- 主
i			i	_
!			1	主蒸気系統配管
:			:	系統
i			i	蒸河
!			!	主法
;			i	
I			Ī	
! !			!	
i			i	
!			!	
 			I I	
i			i	
!			!	
'	_,			
	■枠囲みの範囲は機	密に係る事項ですので公開	昇することはできません。	

添付3 (10/21	添付3	(1	0/	2	1)
------------	-----	----	----	---	---	---

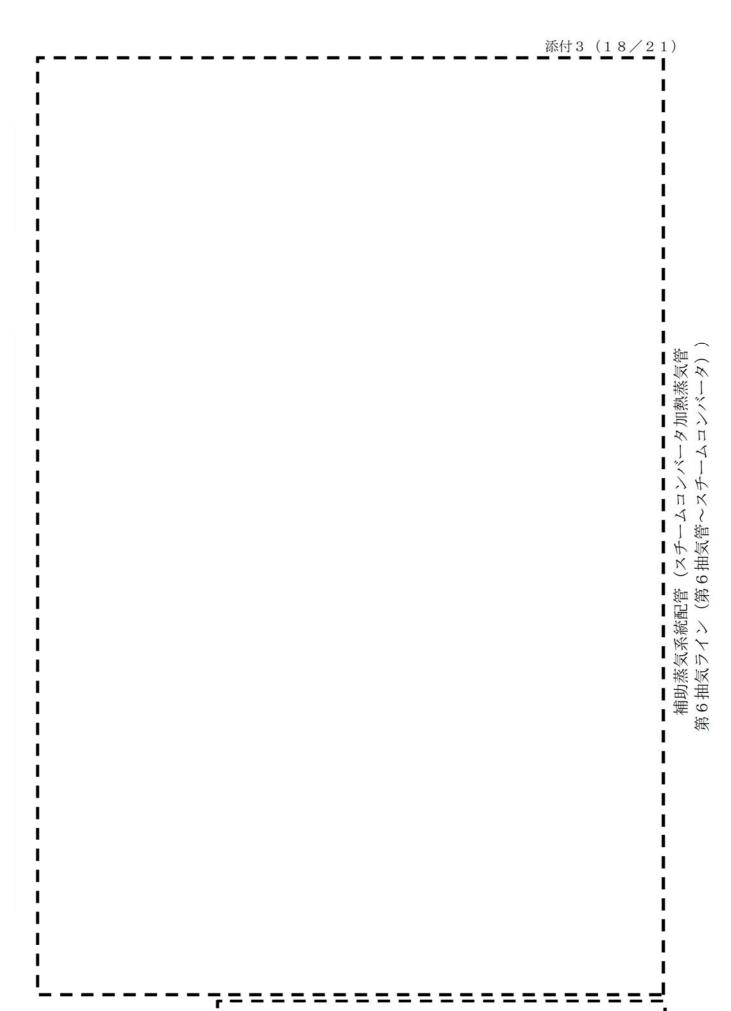
主給水系統配管(C-主給水配管(CV内)) 【Ss地震】

_ —	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
ı																					
•																					
•																					
ı																					
ı																					
ı																					
:																					
ı																					
																					-
•																					'
ı																					
																					ı
ı																					
ı																					
:																					
ı																					
•																					
ı																					
																					ı
•																					- 1
ı																					
:																					
ı																					
•																					'
ı																					
																					ı
ı																					
ı																					
:																					
ı																					
•																					'
1																					ļ
																					Г
1																					
ı																					
-																					
1																					ı
																					ŀ
•																					
ı																					ļ
1																					
L .					_			_			_			_	_			_	_		_ 1
		-												1.0				- A. S			

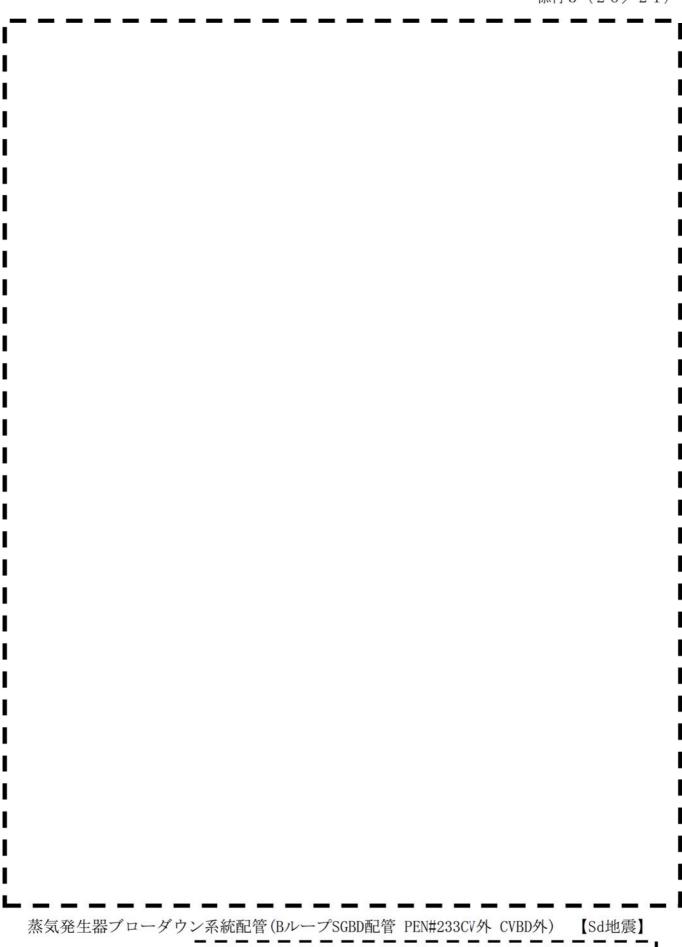
主給水系統配管(B-主給水配管(CV外)) 【Sd地震】

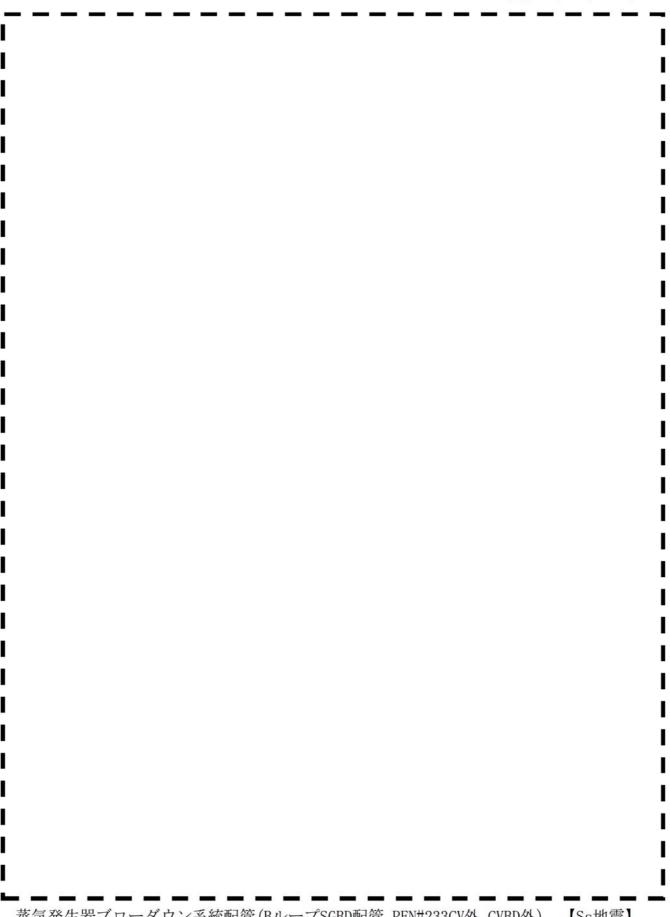
	 	添付3 (12/21)
Ī		ı
I		I
I		I
I		
1		
<u>I</u>		
!		i i
1		i
1 1		i
I		i
i		ı
Ī		ı
I		ı
I		I
I		
I		
<u> </u>		
<u> </u>		
1		ï
1		ï
1 1		i
1		Ī
i i		ı
Ī		ı
I		ı
1		ı
I		ı
1		I

主給水系統配管(B-主給水配管(CV外)) 【Ss地震】


添付3	(1	3/	2	1	1
13/11 0	/ -	0/	_	-	1

	,	添付3 (14/21)	
		į	
		į	
i		į	
] 	:	
		-	震
		į	[Ss地震]
		į	<u> </u>
i	I	Ì	: (CV外
	 	1	水配管
] 	!	主給水系統配管(C一主給水配管(CV外)
	 	į	配管 (C
		į	水系統
i] 	:	土給
	I I	1	
		į	
		į	
		į	
		:	


添付3	(1	5/	2	1
	<u> </u>		_	


	添付3 (16/21)
,	
	i
I	i
	1
	I
	!
	!
	i
I	i
- 	I
I	I
	•
	₹
	_ Y
- I	1 %
	■ 能
	 数
	1 ×
	■ 11
	■ 恒
I	
I	-
	- 5
	• 終
	- L L L L L L L L L L L L L L L L L L L
	1.3
I	I 2/2
I	I
I	I
	I
<u> </u>	l
	!
] 	; ;
' 	j

	添付3 (17/21	.)
	i	
Ī	1	
1	!	
	:	
	i	
i	i	
1	I	
1	ļ	
1 1	i	
i	i	
1	1	
1	!	¥j#II
1 1	i	河
1	i	が蒸
Ī	1	7
1	ļ.	J.
		ド蒸気系統配管(グランド蒸気管)
	i	酒
i	i	系統
1	!	TX.
	:	N.
	i	シン
i	1	T
1	I.	
	:	
	i	
i	Ī	
1	1	
	!	
1 1	i	
i	i	
1	I	
1	!	
■枠囲みの範囲は機密に係る事項ですので公開する	g) g a a	

	添付3 (1	9/21)
i		
1		- ;
1		i
		ı
		ı.
i		!
1		- :
1		tinhit/
		【Sd地震】
		I Sq
i		!
1		₩ E
1		. NBI
		Ι≰
		106 106
i		
1		PEN
1		
		33日
		■ .
i		
I		A.
1		
!		▲配
		1 ※
i		マン
1		X
1		■ □
		五
i		
I		蒸
<u>!</u>		i
1		- 1
• •		I
Ī		!
1		- :
	====	='

蒸気発生器ブローダウン系統配管(BループSGBD配管 PEN#233CV外 CVBD外) 【Ss地震】

関西電力株式会社

事象:耐震(機械設備)

美浜3号炉一耐震-19

タイトル

原子炉容器サポートの補強材及びボルトの中性子およびγ線照射脆化に 対する評価の具体的内容(評価仕様、解析モデル、入力(荷重)条件、評 価結果を含む)について。

回答

原子炉容器サポートの補強材及びボルトの中性子及びγ線照射脆化に対する、耐震安全性評価の詳細は以下のとおり。

1. 評価条件

- ①原子炉容器サポートの耐震クラスに応じたSクラス地震荷重を適用する。
- ②ボルトの欠陥寸法は、「発電用原子力設備に関する構造等の技術基準」に規定されている超音波探傷検査を行う装置の適合基準における最小欠陥検出寸法を基に4.2mmとする。補強材の欠陥寸法は、JEAC4206に準拠して板厚の1/4とし、き裂のアスペクト比はASME Sec. III Appendix Gに準拠して1/6とする。
- ③脆化度はNUREG-1509の評価手法に基づき、プラント運転開始後60年時点の予測値を適用する。
- ④補強材及びボルトの破壊靱性値とSs (Ss1~24) 地震力を受けた場合の 応力拡大係数の比較を行うことによる破壊力学評価を実施する。

2. 評価モデル及び緒元

原子炉容器サポートの補強材及びボルトの評価に用いた緒元を表1 に、評価モデルを図1、2に示す。

表1 原子炉容器サポートの補強材及びボルトの評価に用いた緒元

	補強材	ボルト
炉年(年)	60	60
材質		
初期T _{NDT} (℃)		
照射量(dpa)*		ļ
板厚(mm)		•

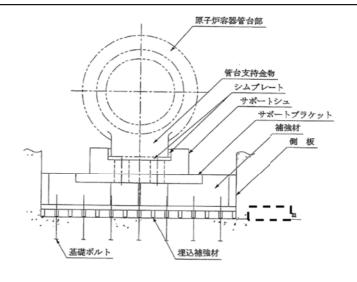


図1 解析モデル (補強材概略図)

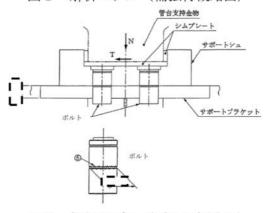


図2 解析モデル (ボルト概略図)

3. 入力条件

入力条件を以下に示す。

- (1) 補強材
 - ①脆化量推定值 ΔT_{NDT}

NUREG-1509に記載の上限脆化予測線図より算出した。

$$\begin{array}{lll} \Delta \, T_{\text{NDT}} &=& 35.423 \times [\log \left(\text{dpa}\right)]^2 + 286.336 \times [\log \left(\text{dpa}\right)] + 585.1 \\ &=& 35.423 \times [\log \left(\text{dpa}\right)]^2 + 286.336 \times [\log \left(\text{dpa}\right)] + 585.1 \\ &=& \text{iC} &\rightarrow \text{C} \end{array}$$

②照射後T_{NDT}推定值

$$T_{NDT} = (初期T_{NDT}) + \Delta T_{NDT} = -$$
 C

- ③最低使用温度 Т╕┛℃
- ④発生応力 σ **_ MPa** (添付-1参照)
- ⑤想定き裂深さ a = t/4=**____m**m

```
⑥平板の幅の半長 b=__mmとする
                       ⑦表面長さの半長 c=3×a=3×___mm
                       ⑧き裂前縁の位置を表す角度 φ ¬____
                       \begin{array}{c} @M_1 \! = \! 1.13 \! - \! 0.09 \times & (a/c) \\ = \! 1.13 \! - \! 0.09 \times & \begin{array}{c} & \\ \hline \end{array} \begin{array}{c} & \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\
                       ①M_2=-0.54+{0.89/ (0.2+a/c)}
=-0.54+{0.89/ (0.2+a/c)}} = -1.54+{0.89/ (0.2+a/c)}
                         @M_3 = 0.5 - \{1/(0.65 + a/c)\} + 14 \times (1 - a/c)^{24}
                                                            = 0.5 - \{1/(0.65 + 1)\} + 14 \times (1 - 1)^{24} = 1 - 1 \rightarrow 1 - 1
                       (2) ボルト
                         ①脆化量推定值 \Delta T_{NDT}
                                         NUREG-1509に記載の上限脆化予測線図より算出した。
                                            \Delta T_{NDT} = 35.423 \times [\log(dpa)]^2 + 286.336 \times [\log(dpa)] + 585.1
                                                                                             =35. 423 \times [\log (1 - 1)^2 + 286. 336 \times [\log (1 - 1)^2 + 585. 1]
                       ②照射後TNDT推定值
                                      ③最低使用温度 T= ℃
                       ④ボルト半径 R= ____mm (ボルト外径 D= ____mm)
                       ⑤発生応力 σ = MPa (添付-1参照)
                         ⑥想定き裂深さ a= _______
```

4. 評価方法

(1) 補強材

· 応力拡大係数 K₁

補強材については、平板要素として、Raju-Numanの式を使用した。 なお、NUREG-1509 「Radiation Effects on Reactor Pressure Vessel Support」の評価手法に従い、応力拡大係数Kに安全率√2を乗じた値 を評価に用る。

$$K_1 = F \sigma \sqrt{(\pi a/Q)}$$
ここで、
$$F = \{M_1 + M_2 \times (a/t)^2 + M_3 \times (a/t)^4\} \times g \times f_{\phi} \times f_{w}$$

$$= \{M_1 + M_2 \times (a/t)^2 + M_3 \times (a/t)^4\} \times g \times f_{\phi} \times f_{w}$$

$$= \{M_1 + M_2 \times (a/t)^2 + M_3 \times (a/t)^4\} \times g \times f_{\phi} \times f_{w}$$

$$= \{M_1 + M_2 \times (a/t)^2 + M_3 \times (a/t)^4\} \times g \times f_{\phi} \times f_{w}$$

$$= \{M_1 + M_2 \times (a/t)^2 + M_3 \times (a/t)^4\} \times g \times f_{\phi} \times f_{w}$$

$$= \{M_1 + M_2 \times (a/t)^2 + M_3 \times (a/t)^4\} \times g \times f_{\phi} \times f_{w}$$

·破壊靭性値 KIR

ASME Section III Appendix Gに記載されている下式により算出します。 K_{IR} =29.43+1.344exp(0.0261×(T- T_{NDT} +88.9)) =29.43+1.344exp(0.0261×(T_{NDT} +88.9))

=29.43+1.344exp(0.0261
$$\times$$
[]-+88.9))
= ____(MPa \sqrt{m})

· 応力比 (=応力拡大係数/破壊靭性値) $\sqrt{2}K_{I}/K_{IR} = 0.32$

(2) ボルト

· 応力拡大係数 K_I

ボルトは、丸棒に置き換え、軸方向に垂直な表面き裂を想定し、 A. LevanとJ. Royerの文献に記載されている式を使用した。(引用文献: Part-circular surface cracks in round bars under tension, bending and twisting (A. Levan and J. Royer)) 。なお、NUREG-1509「Radiation Effects on Reactor Pressure Vessel Support」の評価手法に従い、 応力拡大係数Kに安全率√2を乗じた値を評価に用いた。

$$K_I = F(a/R) \times \sigma \times \sqrt{\pi} a$$
 ここで、
 $F(a/R) = 1.1261 - 0.04796 \times (a/R) - 0.1979 \times (a/R)^2 + 2.5140 \times (a/R)^3$
 $= 1.1261 - 0.04796 \times (a/R)^3$
 $+ 2.5140 \times (a/R)^3$
 $+ 2.5140 \times (a/R)^3$
 $+ 2.5140 \times (a/R)^3$
 $+ 2.5140 \times (a/R)^3$
 $+ 2.5140 \times (a/R)^3$
 $+ 2.5140 \times (a/R)^3$

·破壊靭性値 KIR

ASME Section Ⅲ Appendix Gに記載される式では、過度な裕度を有していることから、供試材 (ASTM-A540 Gr. B24) の動的破壊靱性試験結果を基に、次式を評価用曲線とする。

・応力比(=応力拡大係数/破壊靭性値) $\sqrt{2K_{\rm I}/K_{\rm IR}}$ \rightarrow 0.21

(3) K」による評価の妥当性について

評価部位である補強材、ボルトにはせん断応力が支配的にかかることから、モード Π の破壊形態による応力拡大係数は K_{Π} での評価が考えられるが、同一き裂形状に対して、同一で一様な応力が発生していると仮定して、 K_{I} による評価を行っている。なお、破壊靭性値については、日本国内の規格・基準やASMEにおいてもモード Π のみが規定されており、モード Π の破壊靭性値については、使用できる有効なデータが存在していないことから、従来どおり一般的に用いられるモード Π の破壊靭性値を許容値として評価を行っている。

5. 評価結果

評価結果を表 2 に示します。補強材及びボルトの中性子及びγ線照射 脆化を考慮しても、地震時の応力拡大係数は破壊靭性値を超えることな く、耐震安全評価上問題ないことを確認した。

表2 補強材及びボルトの中性子及びγ線照射脆化に対する評価結果

評価部位	応力拡大係数 (MPa√m)	破壊靱性値 (MPa√m)	応力比
補強材 (全波包絡荷重)	 !		0. 32
ボルト (全波包絡荷重)	1 		0. 21

原子炉容器支持構造物(補強材)、ボルトに発生するせん断応力値 σ の算出について 原子炉容器支持構造物に作用する荷重方向図を図1に、荷重を表1に示す。

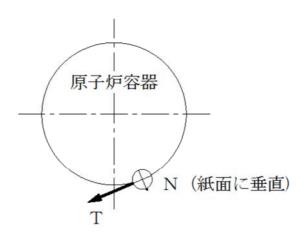
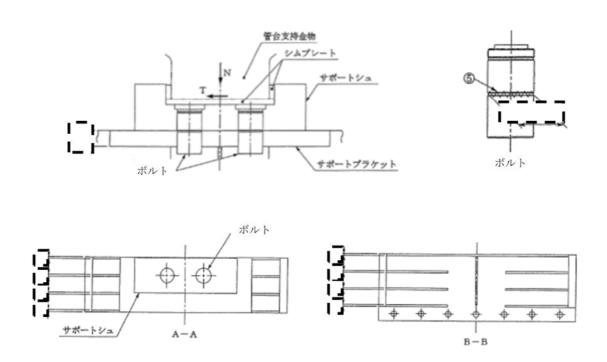


図1 原子炉容器支持構造物に作用する荷重方向

表 1-1 原子炉容器支持構造物に作用する一次応力評価用荷重

- (注1) 鉛直方向荷重において負符号(一)は、鉛直下向きを示す。
- (注2) Nの最大荷重は、自重と地震荷重を加算したものである。

表 1-2 原子炉容器支持構造物に作用する一次+二次応力評価用荷重 (単位:kN)


		1 1 1 1 1 1 1 1 1 1 1
	接線方向荷重 T	鉛直方向荷重 N
自 重		
熱 膨 張 荷 重		
地 震 荷 重		
最 大 荷 重	 	

- (注1) 鉛直方向荷重において負符号(一)は、鉛直下向きを示す。
- (注2) Nの最大荷重は、自重と熱膨張荷重と地震荷重を加算したものである。

2. 応力の算出

2.1 原子炉容器支持構造物の応力計算

原子炉容器支持構造物の構造及び評価箇所を図2に示す。評価対象とする補強材の① 及び②部、ボルトの⑤部におけるせん断応力を算出する。

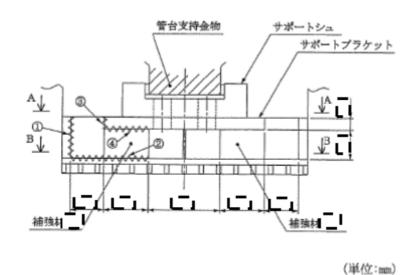


図2 原子炉容器支持構造物の構造及び評価箇所

(1) サポートシュに作用する荷重

サポートシュには図3に示すとおり荷重が作用する。

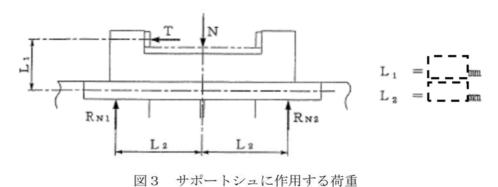


図3より補強材からの反力R_{N1}、R_{N2}を次式よりもとめる。

なお、N、Tについては表1に、L1、L2については図3に示す。

(2) 補強材に作用する荷重

原子炉容器支持構造物を図4のようにモデル化し、補強材に作用する荷重を 求める。

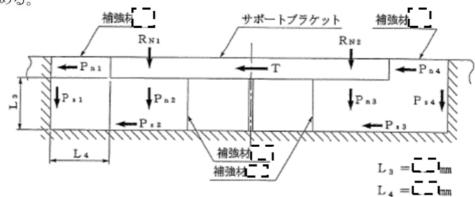
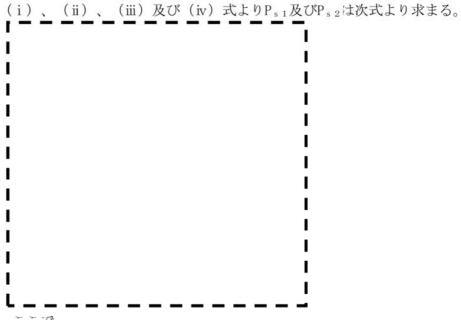



図4 補強材に作用する荷重

 P_{n1} 、 P_{n2} 、 P_{n3} 、 P_{n4} 、 P_{s1} 、 P_{s2} 、 P_{s3} 、 P_{s4} はサポートブラケットより受ける荷重である。

ここでは、条件の厳しい**___**り補強材について評価するが、サポートブラケットは剛体であり、補強材とは溶接による一体構造であることから、次式が成立する。



補強材(③部)の圧縮による変位

補強材 (④部) の圧縮による変位

圧縮による変位とせん断による変位の連続条件から

ここで、

 P_{s 1}: 補強材 (①部) に作用するせん断荷重 (kN)

 P_{s 2}: 補強材 (②部) に作用するせん断荷重 (kN)

 P_{n 1}: 補強材 (③部) に作用する圧縮荷重 (kN)

 P_{n 2}: 補強材 (④部) に作用する圧縮荷重 (kN)

 $A_{s\,1}$: 荷重 $P_{s\,1}$ を受ける補強材(①部)のせん断に対する断面積(mm^2) $A_{s\,2}$: 荷重 $P_{s\,2}$ を受ける補強材(②部)のせん断に対する断面積(mm^2) $A_{c\,3}$: 荷重 $P_{n\,1}$ を受ける補強材(③部)の圧縮に対する断面積(mm^2) $A_{c\,4}$: 荷重 $P_{n\,2}$ を受ける補強材(④部)の圧縮に対する断面積(mm^2)

なお、Tについては表1に、E、G、L3、L4、 A_{s1} 、 A_{s2} 、 A_{c3} 、 A_{c4} については表2に示す。

- 2.2 原子炉容器支持構造物各部の応力計算方法
 - 2.1項で求めた荷重より、補強材及びボルトに発生する応力を算出する。
 - (1) 補強材
 - a せん断応力(①部)

$$\tau_1 = \frac{P_{s1}}{A_{s1}}$$

b せん断応力(②部)

$$\tau_2 = \frac{P_{s2}}{A_{s2}}$$

(2) ボルト

せん断応力(⑤部)

$$\tau_{5} = \frac{T}{2 \times A_{s5}}$$

なお、As1、As2、As5については表2に示す。

3. 応力の計算結果

3.1 計算条件

原子炉容器支持構造物の応力計算条件を表2に示す。

表 2 原子炉容器支持構造物の応力計算条件

名称	記 号	単 位	数 値
荷重作用点までの距離	L ₁	mm	
荷重作用点までの距離	L ₂	mm	
部材の長さ	L ₃	mm	
部材の長さ	L ₄	mm	i
補強材(①部)のせん断に対する断面積	A _{s 1}	mm ²	
補強材(②部)のせん断に対する断面積	A s 2	mm ²	i
補強材(③部)の圧縮に対する断面積	Асз	mm ²	l I
補強材 (④部) の圧縮に対する断面積	A c 4	mm ²	i
ボルト(⑤部)のせん断に対する断面積	A _{s 5}	mm ²	l I
補強材の縦弾性係数 (注1)	Е	MPa	i
補強材の横弾性係数 ^(注2)	G	MPa	İ

- (注1) 補強材の最高使用温度におけるJSME S NC1付録材料図表Part6に規定する縦 弾性係数。
- (注2) 補強材の最高使用温度におけるJSME S NC1付録材料図表Part6に規定する縦 弾性係数から求めた横弾性係数。

3.2 計算結果

2章で示した計算方法により求めた原子炉容器支持構造物の応力計算結果を、表3、4に示す。

表3 原子炉容器支持構造物の応力計算結果 (一次応力評価)

(単位: MPa)

部 材 名	記号	地 震 時
部 材 名	記方	せん断
補強材 (①部)	τ 1	
補強材 (②部)	τ 2	
ボルト (⑤部)	τ 5	

表4 原子炉容器支持構造物の応力計算結果 (一次+二次応力評価)

(単位:MPa)

部 材 名	記号	地 震 時 せん断
補強材(①部)	τ 1	i_ i

以 上

関西電力株式会社

事象:耐震(機械設備)

美浜3号炉-耐震-22Rev1

タイトル	燃料取替用水タンク、復水タンクの機器基礎ボルトの腐食に対する評価の具体的内容(評価仕様、解析モデル、入力(荷重)条件、評価結果を含む)について
説明	燃料取替用水タンク及び復水タンクの機器基礎ボルトの腐食に対する評価の具体的内容について添付に示す。 (1)燃料取替用水タンク : 添付1 (2)復水タンク : 添付2

(1) 燃料取替用水タンク

<評価仕様>

表1-1 評価に必要な諸元

名称	記号	単位	値
最高使用圧力	S	1-1	大気圧
最高使用温度	6-22	$^{\circ}$	95
容器の満水時重量	m _O	kg	
容器の空質量	m _e	kg	[
タンク全高	Н	mm	[
タンク内径	Di	mm	
自由液面高さ	h	mm	[
縦弾性係数比	S	10-1	ן ן
基礎ボルト本数	n	-	[[
基礎ボルトのピッチ円直径	D _c	mm	_ _
ベースプレート外径	D _{b o}	mm	<u> </u>
ベースプレート内径	D _{b i}	mm	
基礎ボルト呼び径	d	_	
基礎ボルト 腐食量	_	mm	0.3 (直径0.6)
基礎ボルト材質	_	_	:
評価用加速度(水平):図2参照	Сн	G	
評価用加速度(鉛直)	$C_{ m V}$	G	
スロッシング評価用加速度:図2参 照	С" рн	G	- - -

<解析モデル>

JEAG4601-1987の平底たて置円筒形容器の1質点計応答解析結果にハウスナー理論で求めたスロッシング荷重を加算して評価を実施した。

図1 解析モデル

<入力(荷重)条件>

【水平方向】

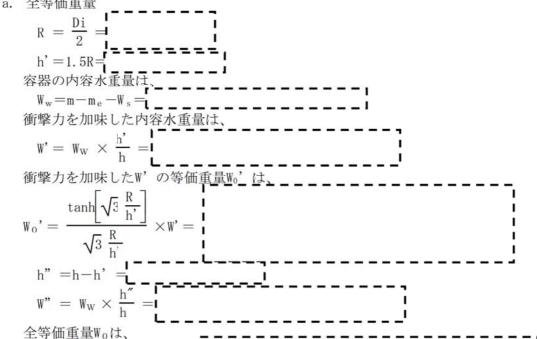
燃料取替用水タンク床応答曲線**(水平方向)より加速度を算出した。(図2参照)加速度は、固有周期 (s)での値 Gを用いる。(IG=9.80665m/s²) (m/s²)

【鉛直方向】

燃料取替用水タンク床応答曲線*(鉛直方向)より加速度を算出した。(図3参照) 鉛直方向は剛領域であることから、地震力として床加速度(ZPA)の1.2倍を用いる。

$$(G) (1G=9.80665 \text{m/s}^2)$$

$$= (\overline{\text{m/s}}^2)$$


※全波包絡FRSにより応答加速度を算出している。

Wo:同定質量

<評価結果>

JEAG4601-1987の平底たて置き円筒形容器の1質点系応答解析結果にハウスナー理論で 求めたスロッシング荷重を加算して評価している。

- 1. 地震荷重の計算
 - a. 全等価重量

 $W_0 = W_0$ ' + W" $+ m_e + W_s =$

b. 地震荷重 $F_{HO} = a_H \cdot W_O = C_H \cdot g \cdot W_O =$

2. 振動力を加味した荷重の計算

a. 振動力を加味したWwの等価重量W1

$$W_{1} = \left(\begin{array}{c} 0.318 \frac{R}{h} \end{array}\right) \cdot \tanh\left(\begin{array}{c} 1.84 \frac{h}{R} \end{array}\right) \cdot W_{W}$$

b. スロッシングの固有周期

スロッシングによる円固有振動数ωは、

$$\omega = \sqrt{\frac{1.84 \times 9806.65}{R} \cdot \tanh\left(1.84 \frac{h}{R}\right)}$$

スロッシングの固有周期T'は、

$$T' = \frac{2\pi}{\omega} =$$

c. 水平方向震度

スロッシングの固有周期T'に (s)は、床応答曲線の記載範囲外(長周期側)であるため、スロッシングの固有周期に相当する応答加速度を設定する必要がある。

実用上、応答加速度 (a) と応答速度 (ν) の関係は、固有円振動数 (ω) を用いて、

 $a=\omega \nu=(2\pi/T)\nu$ となる。ここで、 $\omega=2\pi/T$ (T: 固有周期) 図 4 の床応答曲線より、固有周期1(s) の時の応答加速度C" DH は C であり、これに対応する応答速度 ν は、

$$\nu = \frac{1}{2\pi} C''_{DH} =$$

スロッシングの固有周期T'まで、応答速度 ν が一定であるとしたうえ、安全側にスロッシングの固有周期T'に相当する加速度C'_{DH}を求めると、

$$C'_{DH} = \frac{2\pi}{T'} \times \nu =$$

$$a'_{DH} = C'_{DH} \times g =$$

d. 最大変位A₁及び自由振動角度 θ_h

$$A_{1} = \frac{\mathbf{a'}_{DH} \times 10^{3}}{\omega^{2}} = \frac{\mathbf{a'}_{DH} \times 10^{3$$

e. 振動力を加味した地震荷重

$$F_{H\,1}\!=\!1.2W_1\cdot g\cdot\theta_h\cdot\sin\omega t$$

ここで $F_{H\,1}$ の最大値は、 $\sin\omega t\!=\!1$ のときであるので、
 $F_{H\,1}\!=\!1.2W_1\cdot g\cdot\theta_h$ 1

- 3. 基礎ボルトの応力計算
 - 3. 1 衝撃力を加味した地震荷重

転倒モーメント $M_0 = F_{H0} \cdot h_0 = \frac{1}{2}$ ここで、 $h_0' = \frac{h'}{8} \left[\frac{4\sqrt{3} \frac{R}{h'}}{\tanh(\sqrt{3} \frac{R}{h'})} - 1 \right] = \frac{W_0' (h_0' + h'') + W'' \cdot \frac{h''}{2} + m_e \cdot \frac{H}{2} + W_s \cdot H}{W_0} \right]$

3.2 振動力を加味した地震荷重

転倒モーメント $M_1=F_{H\,1}\cdot h_1=$ ここで、

$$h_{1} = h - \left[\frac{\cosh\left(1.84 \frac{h}{R}\right) - 2.01}{1.84 \frac{h}{R} \cdot \sinh\left(1.84 \frac{h}{R}\right)} \right] \cdot h$$

3. 3 応力の計算(記号の定義は、JEAG4601-1987によります。)

(1) 引張応力

基礎ボルトに引張力が作用しないのは、 α が π と等しくなったときであり、 α を π に近づけた場合の値e=0.75及びz=0.25を F_{τ} を求める式に代入し、得られる F_{τ} の値によって引張力の有無を次のように判断する。

$$F_{t} = \frac{\sqrt{M^{2} + (a_{v} \cdot m_{0} \cdot z \cdot D_{c})}}{e \cdot D_{c}} - \frac{z \cdot m_{0} \cdot g}{e}$$

転倒モーメントMが作用した場合に生じる基礎ボルトの引張荷重と基礎部の圧縮荷重については、荷重と変位量の釣合い条件を考慮することにより求める。

 $a. \sigma_b$ 及び σ_c を仮定して係数kを求める。

$$k = \frac{1}{1 + \frac{\sigma_b}{s \sigma_c}}$$

b.
$$\alpha$$
 を求める。
$$\alpha = \cos^{-1}(1-2\mathsf{k}) = -$$

c. 各定数e、z、C_t及びC_cを求める。

$$e = \frac{1}{2} \left\{ \frac{(\pi - \alpha)\cos^{2}\alpha + \frac{1}{2}(\pi - \alpha) + \frac{3}{2}\sin\alpha\cos\alpha}{(\pi - \alpha)\cos\alpha + \sin\alpha} + \frac{\frac{1}{2}\alpha - \frac{3}{2}\sin\alpha\cos\alpha + \alpha\cos^{2}\alpha}{\sin\alpha - \alpha\cos\alpha} \right\}$$

$$= \frac{1}{2} \left\{ \frac{X_{1}}{X_{2}} + \frac{X_{3}}{X_{4}} \right\} = \frac{1}{2} \frac{1}{2} \frac{X_{1}}{X_{2}} + \frac{X_{3}}{X_{4}} = \frac{1}{2} \frac{1}{2} \frac{X_{1}}{X_{2}} + \frac{X_{2}}{X_{3}} = \frac{1}{2} \frac{1}{2} \frac{X_{1}}{X_{2}} + \frac{X_{2}}{X_{3}} = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{X_{1}}{X_{2}} + \frac{X_{2}}{X_{3}} = \frac{1}{2} \frac{1}$$

$$z = \frac{1}{2} \left\{ \cos \alpha + \frac{\frac{1}{2}\alpha - \frac{3}{2}\sin \alpha \cos \alpha + \alpha \cos^{2} \alpha}{\sin \alpha - \cos \alpha} \right\}$$

$$= \frac{1}{2} \left\{ \cos \left(\frac{1}{1 + \frac{X_{5}}{X_{6}}} \right) = \frac{1}{1 + \frac{X_{5}}{1 + \cos \alpha}} \right\}$$

$$X_{5} = \left\{ \frac{X_{6}}{1 + \frac{2}{1 + \cos \alpha}} \right\}$$

$$= \frac{2\{(\sin \alpha - \alpha \cos \alpha)}{1 - \cos \alpha}$$

$$= \frac{2(\sin \alpha - \alpha \cos \alpha)}{1 - \cos \alpha}$$

d. 各定数を用いて F_t 及び F_c を求める。

$$F_{t} = \frac{\sqrt{M^{2} + (a_{v} \cdot m_{0} \cdot z \cdot D_{c})}}{e \cdot D_{c}} - \frac{z \cdot m_{0} \cdot g}{e}$$

$$F_{c} = \frac{\sqrt{M^{2} + (a_{v} \cdot m_{0} \cdot (z - e) \cdot D_{c})}}{e \cdot D_{c}} - (1 - \frac{z}{e}) \cdot m_{0} \cdot g$$

e.
$$\sigma_b \mathcal{D} \vec{\sigma}_c \vec{e}$$
 求める。
$$\sigma_b = \frac{2F_t}{t_1 D_c C_t} = \frac{1}{t_1 D_c C_t}$$
 小数第1位以下を切り上げ)
$$\sigma_c = \frac{2F_c}{(t_2 + st_1) D_c C_c}$$
 枠囲みの範囲は機密に係る事項ですので公開することはできません。

$$\begin{aligned} & t_{1} = \frac{\mathbf{n} \cdot \mathbf{A}_{b}}{\pi \, \mathbf{D}_{c}} = \\ & t_{2} = \frac{1}{2} (\mathbf{D}_{b \, 0} - \mathbf{D}_{b \, i}) - t_{1} = \frac{1}{2} \times \mathbf{I} \\ & = \mathbf{I} \\ & \mathbf{A}_{b} = \frac{\pi}{4} \mathbf{d}_{2} = \frac{\pi}{4} \mathbf{A} \end{aligned}$$

(2) 基礎ボルトに生じるせん断応力

$$\tau_b = \frac{F_H}{A_b \cdot n}$$

$$= \frac{I}{A_b \cdot n}$$
 $= (小数第1位以下を切り上げ)$
 $F_H = a_H \cdot m_0 - F_\mu$
 $= C_H \cdot g \cdot m_0 - F_\mu$
 $= C_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot m_0 - F_\mu$
 $= I_H \cdot g \cdot$

4. 評価結果

以上の結果をまとめると以下の表2の通りであり、耐震安全性評価上問題ない。

	10	乙 計1川がロフ	术(然行取省	用水グマグリ		
	減肉前			減肉後		
応力	発生応力 (MPa)	許容値 (MPa)	応力比	発生応力* 許容値 (MPa) (MPa)		応力比
引張	Ţ		0.64	!		0.65
せん断	7		0.36			0.36

表 2 評価結果 (燃料取替用水タンク)

*減肉後の発生応力については、次式より求める。

減肉前の発生応力×基礎ボルトの減肉前の断面積 基礎ボルトの減肉後の断面積

$$=$$
減肉前の発生応力× $\frac{\frac{\pi}{4}}{\frac{\pi}{4}}$ ×【 $\frac{1}{4}$ -0.3×2) 2

なお、燃料取替用水タンクの基礎ボルトについては、工事計画において水平2方向および鉛直方向地震力の組合わせによる影響評価の評価部位となっていることから、腐食(全面腐食)に対する耐震安全性評価においても水平2方向および鉛直方向地震力の組合わせによる影響評価を行った。結果は、以下のとおり。

		減肉前		減肉後		
応力	発生応力 _(MPa)	許容値 (<u>M</u> Pa)	応力比	発生応力* _(MPa)	許容値 (MPa)	応力比
引張	T		0.78			0.81
せん断			0.50	i		0.51

表3 水平2方向および鉛直方向地震力の組み合わせを考慮した評価結果

○許容応力の算出

F=Min(1.2Sy, 0.7Su)=Min(1.2Sy,
ここで、F: 材料の許容応力を決定する場合の基準値

・引張応力の算出 f_t*=F/2=**1**(MPa)

よって、引張許容応力は、

 $1.5f_t^*=1.5\times$

・せん断応力の算出 f_s*=F/1.5√3**=** _____(MPa)

よって、せん断許容応力は、

1.5 $f_s^* = 1.5 \times 10^{-1}$ (MPa)

・せん断応力と引張応力の組合せ許容応力

引張許容応力について、せん断応力を組み合わせた場合の許容値を算出した。

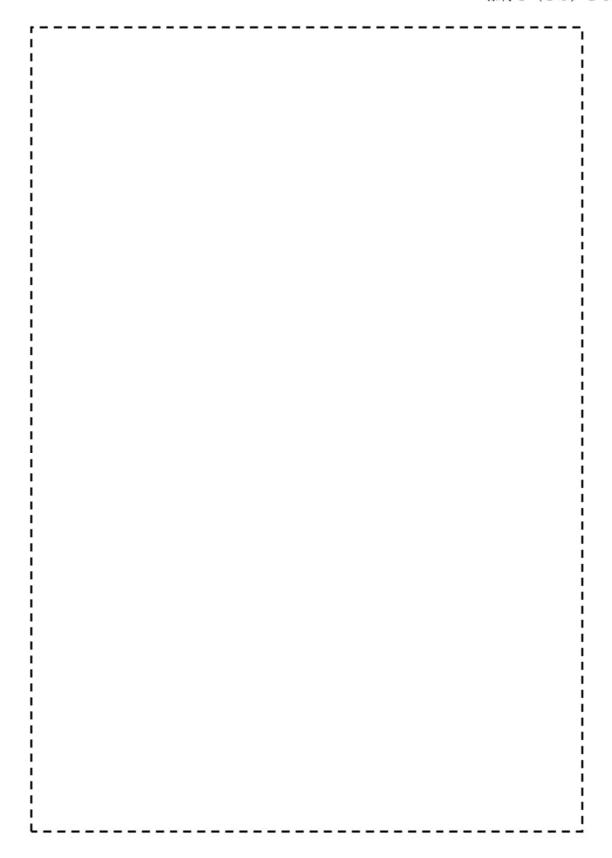


図2 燃料取替用水タンク 床応答曲線(水平方向)

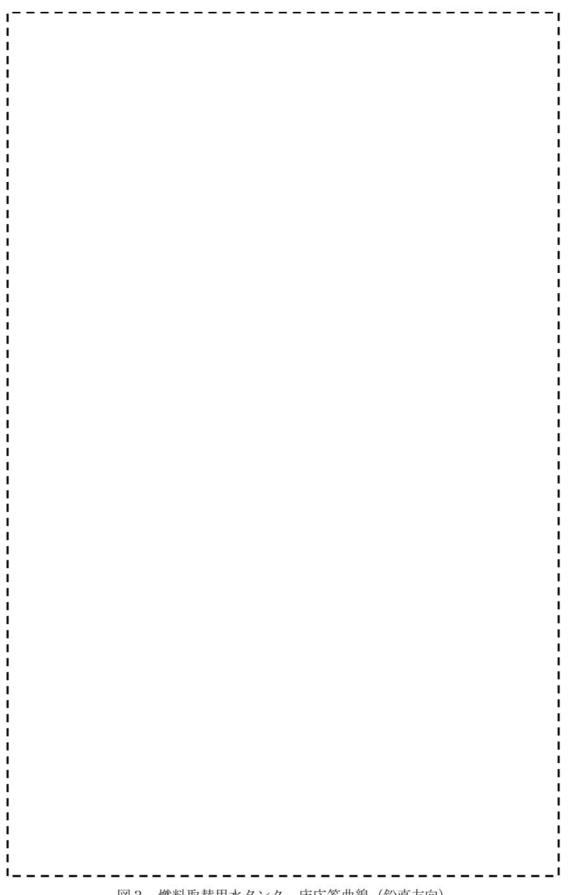


図3 燃料取替用水タンク 床応答曲線(鉛直方向)

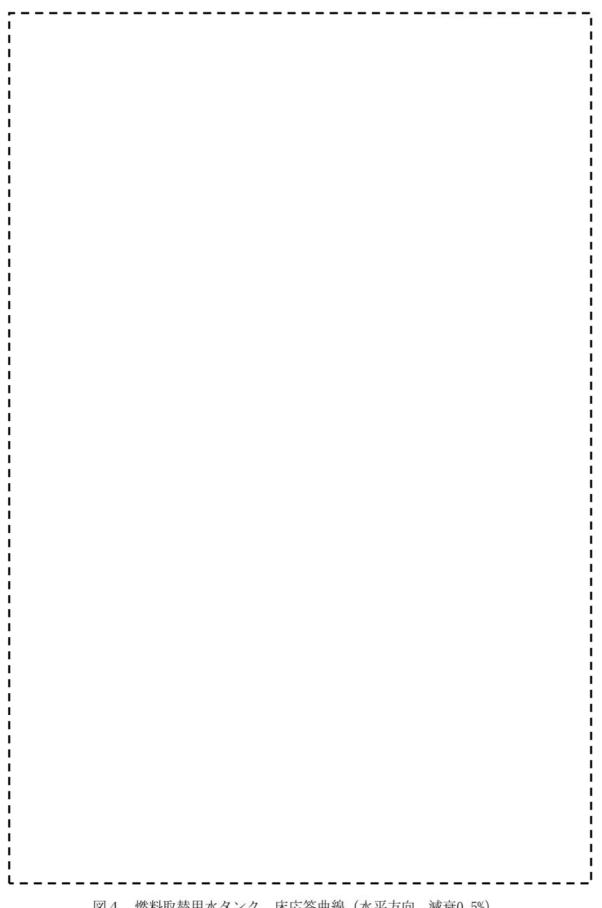
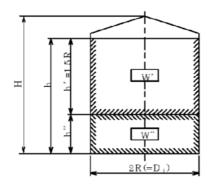
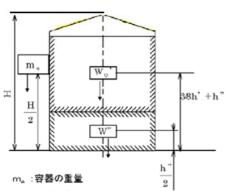



図4 燃料取替用水タンク 床応答曲線 (水平方向 減衰0.5%)

別図

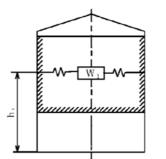
燃料取替用水タンクの基礎ボルト評価に使う 質量・高さ・径の説明図


- W':運動流体の質量
- W":拘束流体の質量
- R:タンク胴の内半径
- D_i:タンク胴の内径
- H:タンク全高
- h:自由液面高さ
- h':運動流体の深さ
- h":拘束流体の深さ

衝撃力を加味した計算

h' o

W_o':衝撃力を考慮したW'の等価質量


h'。:Wo'の等価着力点の高さ

W。:積雪重量

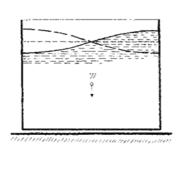
W_o:衝撃力を考慮した全等価質量 (W_o=W_o'+W"+m_e+W_s)

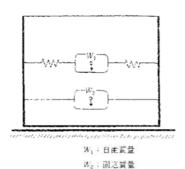
揺動力を加味した計算

W:振動力を考慮したW'の等価質量

h-:W₁の等価着力点の高さ

(2) 復水タンク


<評価仕様>


表1 評価に必要な諸元

名称	記号	単位	値
最高使用圧力	7-	_	大気圧
最高使用温度	87 <u></u>	$^{\circ}$	80
容器の満水時重量	Мо	kg	
容器の空質量	Ме	kg	Γ:
タンク全高	Н	mm	[
タンク内径	Di	mm	
自由液面高さ	h	mm	Γ!
縦弾性係数比	s	-	[i
基礎ボルト本数	n	-	
基礎ボルトのピッチ円直径	Dc	mm	
ベースプレート外径	D _b o	mm	
ベースプレート内径	D _{b i}	mm	
基礎ボルト呼び径	d	:	T <u>.</u>
基礎ボルト 腐食量	_	mm	0.3 (直径0.6)
基礎ボルト材質	_	_	
評価用加速度(水平):図2参照	Сн	G	
評価用加速度(鉛直)	C_{V}	G	
スロッシング評価用加速度	C" DH	G	

<解析モデル>

JEAG4601-1987の平底たて置円筒形容器の1質点系応答解析結果にハウスナー理論で求めたスロッシング荷重を加算して評価を実施した。

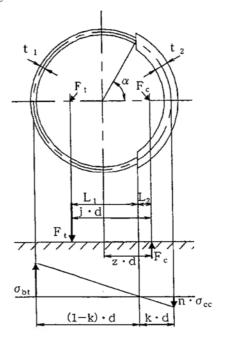


図1 解析モデル

<入力(荷重)条件>

【水平方向】

復水タンク床応答曲線<u>* (水</u>平方向) より加速度を算出した。(図 2 参照)加速度は、固有周期 (s)での値 Gを用いる。(IG=9.80665m/s²) (m/s²) (m/s²)

【鉛直方向】

復水タンク床応答曲線*(鉛直方向)より加速度を算出した。(図3参照) 鉛直方向は剛領域であることから、地震力として床加速度(ZPA)の1.2倍を用いる。

(G)
$$(1G=9.80665\text{m/s}^2)$$

 $= (\text{m/s}^2)$

※全波包絡FRSにより応答加速度を算出している。

<評価結果>

JEAG4601-1987の平底たて置き円筒形容器の1質点系応答解析結果にハウスナー理論で求 めたスロッシング荷重を加算して評価している。

- 1. 地震荷重の計算
 - a. 全等価重量

$$R = \frac{Di}{2} = \frac{1}{2}$$

$$h' = 1.5R = \frac{1}{2}$$

容器の内容水重量は

$$W_w = m_0 - m_e - W_s = 1$$

衝撃力を加味した内容水重量は

$$W' = W_W \times \frac{h'}{h} = 1$$

衝撃力を加味したW'の等価重量Wo'

$$W_{o}' = \frac{\tanh\left[\sqrt{3} \frac{R}{h'}\right]}{\sqrt{3} \frac{R}{h'}} \times W' = \frac{1}{1 + \frac{$$

$$h'' = h - h' =$$

$$W'' = W_W \times \frac{h''}{h} =$$

全等価重量Woは、

$$W_{0} = W_{0}' + W'' + m_{e} + W_{s} =$$

b. 地震荷重

$$F_{HO} = a_H \cdot W_O = C_H \cdot g \cdot W_O =$$

2. 振動力を加味した荷重の計算

a. 振動力を加味したWwの等価重量W1

$$W_{1} = \left(\begin{array}{c} 0.318 \frac{R}{h} \end{array}\right) \cdot \tanh\left(\begin{array}{c} 1.84 \frac{h}{R} \end{array}\right) \cdot W_{W}$$

b. スロッシングの固有周期

スロッシングによる円固有振動数ωは、

$$\omega = \sqrt{\frac{1.84 \times 9806.65}{R} \cdot \tanh\left(1.84 \frac{h}{R}\right)}$$

$$= \frac{1}{2}$$
スロッシングの固有周期T'は、
$$T' = \frac{2\pi}{\omega} = \frac{1}{2}$$

c. 水平方向震度

実用上、応答加速度 (a) と応答速度 (ν) の関係は、固有円振動数 (ω) を用いて、

 $a=\omega \nu=(2\pi/T)\nu$ となる。ここで、 $\omega=2\pi/T$ (T: 固有周期) 図 2 の床応答曲線より、固有周期1(s) の時の応答加速度C" DH は C であり、これに対応する応答速度 ν は、

$$\nu = \frac{1}{2\pi} C''_{DH} =$$

安全側に、スロッシングの固有周期T'まで、応答速度 ν が一定であるとし、スロッシングの固有周期T'に相当する加速度C' DHを求めると、

$$C'_{DH} = \frac{2\pi}{T'} \times v =$$

$$a'_{DH} = C'_{DH} \times g =$$

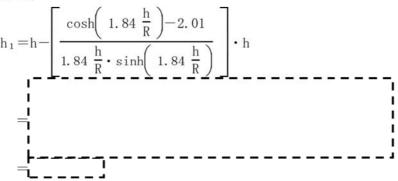
d. 最大変位A₁及び自由振動角度 θ_h

$$A_{1} = \frac{\mathbf{a'}_{DH} \times 10^{3}}{\omega^{2}} = \frac{\mathbf{a'}_{DH} \times 10^{3$$

e. 振動力を加味した地震荷重

$$F_{\text{H}\,1}\!=\!1.\,2W_1\cdot g\cdot \theta_{\,\text{h}}\cdot \sin\omega\,t$$

ここで $F_{\text{H}\,1}$ の最大値は、 $\sin\omega\,t\!=\!1$ のときであるので、
 $F_{\text{H}\,1}\!=\!1.\,2W_1\cdot g\cdot \theta_{\,\text{h}}\!=\!$


- 3. 基礎ボルトの応力計算
- 3. 1 衝撃力を加味した地震荷重

転倒モーメント $M_{0} = F_{H0} \cdot h_{0} = \frac{1}{1}$ ここで、 $h_{0}' = \frac{h'}{8} \left[\frac{4\sqrt{3} \frac{R}{h'}}{\tanh(\sqrt{3} \frac{R}{h'})} - 1 \right] = \frac{1}{1}$ $W_{0}' (h_{0}' + h'') + W'' \cdot \frac{h''}{2} + m_{e} \cdot \frac{H}{2} + W_{s} \cdot H$ $h_{0} = \frac{W_{0}' (h_{0}' + h'') + W'' \cdot \frac{h''}{2} + m_{e} \cdot \frac{H}{2} + W_{s} \cdot H}{W_{0}}$

| | | | | | | | |-----|

3.2 振動力を加味した地震荷重

転倒モーメント $M_1 = F_{H1} \cdot h_1 =$ ここで、

3. 3 応力の計算(記号の定義は、JEAG4601-1987によります。)

(1) 引張応力

基礎ボルトに引張力が作用しないのは、 α が π と等しくなったときであり、 α を π に近づけた場合の値e=0.75及び α 2=0.25を α 5を求める式に代入し、得られる α 5、の値によって引張力の有無を次のように判断する。

$$F_t = \frac{\sqrt{M^2 + (a_v \cdot m_0 \cdot z \cdot D_c)}}{e \cdot D_c} - \frac{z \cdot m_0 \cdot g}{e}$$

$$= \frac{1}{1 \cdot 1}$$

$$= \frac$$

転倒モーメントMが作用した場合に生じる基礎ボルトの引張荷重と基礎部の圧縮荷重については、荷重と変位量の釣合い条件を考慮することにより求める。 a. σ_b 及び σ_c を仮定して係数kを求める。

$$k = \frac{1}{1 + \frac{\sigma_b}{S\sigma_a}} = \frac{1}{1 + \frac{\sigma_b}{S\sigma_a}}$$

b.
$$lpha$$
 を求める。 $lpha=\cos^{-1}(1-2\mathsf{k})=\cos^{-1}(1-2\mathsf{X}$ ______

c. 各定数e、z、C_t及びC_cを求める。

$$e = \frac{1}{2} \left\{ \frac{(\pi - \alpha)\cos^{2}\alpha + \frac{1}{2}(\pi - \alpha) + \frac{3}{2}\sin\alpha\cos\alpha}{(\pi - \alpha)\cos\alpha + \sin\alpha} + \frac{\frac{1}{2}\alpha - \frac{3}{2}\sin\alpha\cos\alpha + \alpha\cos^{2}\alpha}{\sin\alpha - \alpha\cos\alpha} \right\}$$

$$= \frac{1}{2} \left\{ \frac{X_{1}}{X_{2}} + \frac{X_{3}}{X_{4}} \right\} = \frac{1}{2} -$$

$$z = \frac{1}{2} \left\{ \begin{array}{l} \frac{1}{2}\alpha - \frac{3}{2}\sin\alpha\cos\alpha + \alpha\cos^{2}\alpha \\ \sin\alpha - \alpha\cos\alpha \end{array} \right\}$$

$$= \frac{1}{2} \left\{ \begin{array}{l} \cos\left(\frac{X_{5}}{1 + \alpha}\right) - \frac{X_{5}}{X_{6}} \end{array} \right\} = \frac{1}{1 + \cos\alpha}$$

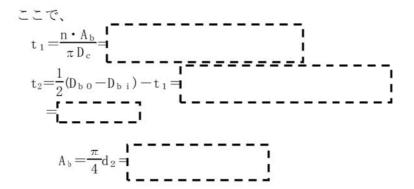
$$X_{5} = \frac{X_{6} = \frac{2\{(\pi - \alpha)\cos\alpha + \sin\alpha\}}{1 + \cos\alpha}}{1 + \cos\alpha}$$

$$= \frac{1}{1 + \cos\alpha}$$

$$= \frac{2(\sin\alpha - \alpha\cos\alpha)}{1 - \cos\alpha}$$

d. 各定数を用いてFt及びFcを求める。

$$F_{t} = \frac{\sqrt{M^{2} + (a_{v} \cdot m_{0} \cdot z \cdot D_{c})}}{e \cdot D_{c}} - \frac{z \cdot m_{0} \cdot g}{e}$$


$$= \frac{\sqrt{M^{2} + (a_{v} \cdot m_{0} \cdot (z - e) \cdot D_{c})}}{e \cdot D_{c}} - (1 - \frac{z}{e}) \cdot m_{0} \cdot g$$

$$= \frac{\sqrt{M^{2} + (a_{v} \cdot m_{0} \cdot (z - e) \cdot D_{c})}}{e \cdot D_{c}} - (1 - \frac{z}{e}) \cdot m_{0} \cdot g$$

e. σ_b 及び σ_c を求める。 $\sigma_b = \frac{2F_t}{t_1D_cC_t} = \frac{(小数第1位以下を切り上げ)}{t_1D_cC_t}$

$$\sigma_{c} = \frac{2F_{c}}{(t_{2} + st_{1})D_{c}C_{c}}$$

$$= \frac{1}{1}$$

(2) 基礎ボルトに生じるせん断応力

$$\tau_b = \frac{F_H}{A_b \cdot n}$$
 = (小数第1位以下を切り上げ)
$$F_H = a_H \cdot m_0 - F_\mu$$

$$= C_H \cdot g \cdot m_0 - F_\mu$$

$$= C_T \cdot g \cdot m_0 - F_\mu$$

$$= C_T \cdot g \cdot m_0 - F_\mu$$

$$= C_T \cdot g \cdot m_0 - F_\mu$$

4. 評価結果

以上の結果をまとめると以下の表2の通りであり、耐震安全性評価上問題ない。

減肉前 減肉後 応力 発生応力 許容値 発生応力* 許容値 応力比 応力比 (MPa) (MPa) (MPa) 引張 0.59 0.60 0.29 せん断 0.29

表 2 評価結果 (復水タンク)

*減肉後の発生応力については、次式より求める。

減肉前の発生応力×基礎ボルトの減肉前の断面積 基礎ボルトの減肉後の断面積

$$=$$
減肉前の発生応力× $\frac{\frac{\pi}{4}}{\frac{\pi}{4}}$ × $\left\{\begin{array}{c} -1 \\ -0.3 \times 2 \end{array}\right\}^2$

○許容応力の算出

ここで、F: 材料の許容応力を決定する場合の基準値

・せん断応力の算出 f_s*=F/1.5√3= V1.5√3= MPa)

よって、せん断許容応力は、

1.5 $f_s^*=1.5\times$ [MPa)

・せん断応力と引張応力の組合せ許容応力

引張許容応力について、せん断応力を組み合わせた場合の許容値を算出した。

Ssによるせん断応力 τ = $\P(MPa)$ 1. 4×1 . $5f_t^* - 1$. $6 \tau = 1$. $4 \times \P(MPa)$

よって、組合せを考慮した引張許容応力は、 $Min(1.5f_t^*, 1.4 \times 1.5f_t^* - 1.6\tau) = Min$

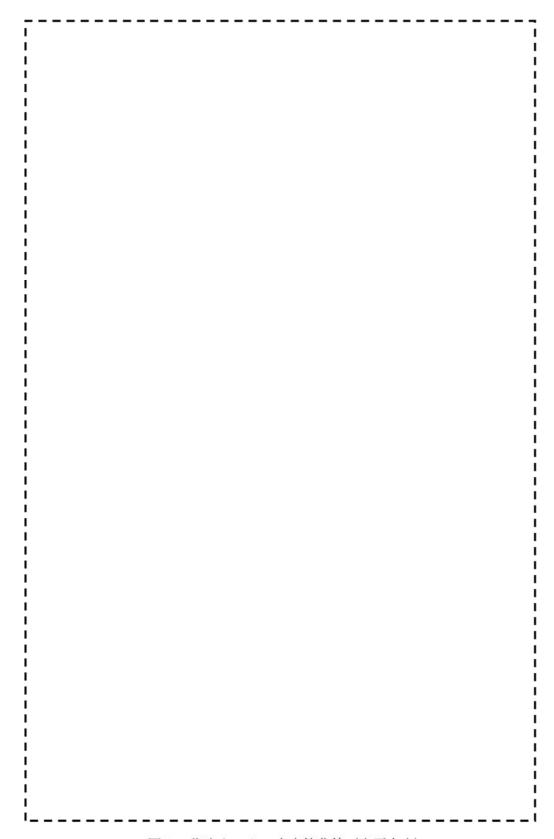


図2 復水タンク 床応答曲線(水平方向)

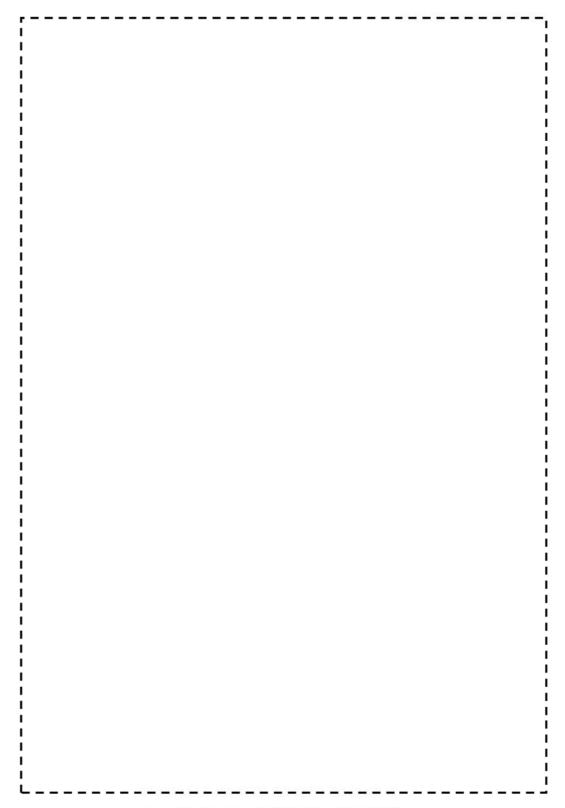


図3 復水タンク 床応答曲線(鉛直方向)

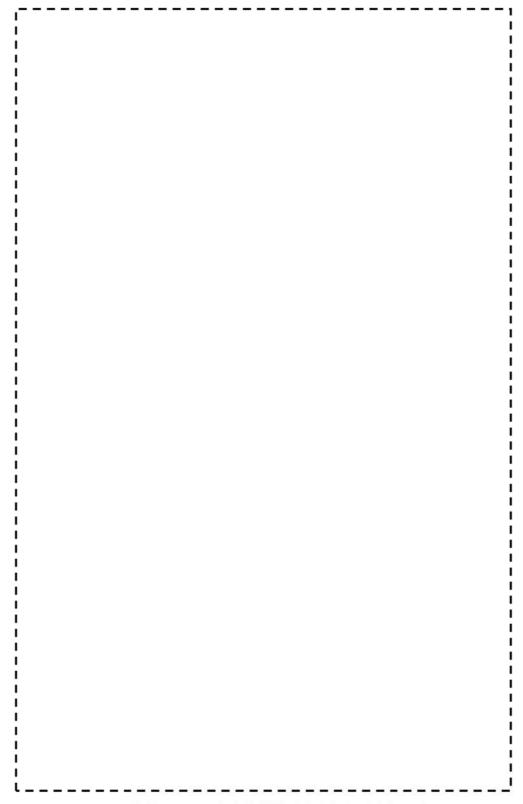
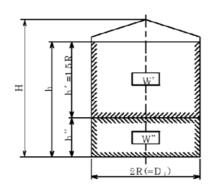
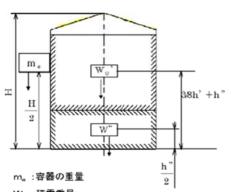



図3 復水タンク 床応答曲線 (水平方向 減衰0.5%)

別図

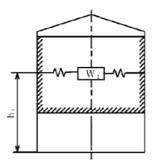
復水タンクの基礎ボルト評価に用いる 質量・高さ・径の説明図


- W':運動流体の質量
- W":拘束流体の質量
- R:タンク胴の内半径
- D_i:タンク胴の内径
- H:タンク全高
- h:自由液面高さ
- h':運動流体の深さ
- h":拘束流体の深さ

衝撃力を加味した計算

h'o

W。':衝撃力を考慮したW'の等価質量


h'。:Wo'の等価着力点の高さ

W。:積雪重量

W。:衝撃力を考慮した全等価質量 $(W_0 = W_0' + W'' + m_a + W_s)$

揺動力を加味した計算

W:振動力を考慮したW'の等価質量

h-:W₁の等価着力点の高さ

関西電力株式会社

事象:耐震(機械設備)

美浜3号炉-耐震-23

タイトル

後打ちアンカの評価における、減肉後の応力比の算定根拠 (プラント設計時の耐震条件含む) について。

回答

後打ちアンカについては、メーカーの後打ちアンカ使用基準に基づき最大許容荷重が定められており、この値以上の荷重がボルトに作用しないよう施工されている。

後打ちアンカの評価にあたっては、ボルトに技術評価により想定される 運転開始後60年時点での減肉量(半径方向に0.3mm)を考慮した上で、保守 的に最大許容荷重が作用した場合であっても応力比が1以下になることを 確認している。

減肉後の応力比の算定条件及び算定結果を添付資料1に示す。

新たな基準地震動Ssに対する耐震安全性については、新規制基準工事計画認可申請における後打ちアンカ評価設備において、表1の対象機器に対し、減肉による影響を考慮した耐震評価を実施し、応力比が1以下となることから健全性を確認してる(補足参照)。

表 1 新規制基準の工事計画認可申請における後打ちアンカ評価設備

分 類	設 備				
熱交換器	蒸気発生器ブローダウン サンプルクーラ				
電気設備	代替所内電気設備用変圧器				
計測制御設備	給水流量				
+	1 次冷却材ポンプサポート				
機械設備	加圧器サポート				
電源設備	蓄電池				

以 上

<補足>

新規制基準の工事計画認可申請における後打ちアンカのうち、PLM評価対象となる設備について、新たな基準地震動Ss (Ss-1~Ss-24) に対する評価例を以下に示す。

分類	設備		型式	ボルト 呼び径	ボルト 本数(本)	減肉前応力比	減肉後応力比	備考	
熱交換器	サンプル クーラ	ーダウ	を生器ブロ カンサンプ クーラ	メカニカ ルアンカ	T I I				引張
		70	9: 7						【せん断 【
電気設	配電設備		 「内電気設	ケミカル	1				引張
備	11.电灰洲	備月	月変圧器	アンカ	i				せん断
					i i				引張
計測制	プロセス	San and the san an	給水	メカニカ	i				せん断
御設備	計測制御設備	流量	流量ルアン	ルアンカ	Ī				引張
					i I				せん断
		1 次汽	う却材ポン	ケミカル	I				引張
機械	重機器サ	プサ	ナポート	アンカ	l J				せん断
設備	ポート	加压型	5.4.ポート	ケミカル	I I				引張
		加圧器サポートア		アンカ	I J				せん断
電源	直流電源	支	皆電池	ケミカル	I I				引張
設備	設備	Ħ	3 PETE	アンカ	l L	<u>. </u>			せん断

減肉後の応力比の算定条件及び算定結果 (引張)

	ボルト 呼び径	長期最大	短期最大	断面積		減肉後		80° - 00° - 100° 000° 100
型式		許容荷重 (N)	許容荷重*1 (N)	減肉前 (mm²)	減肉後 (mm²)	発生応力*2 (N/mm²)	許容応力* ³ (N/mm ²)	減肉後の 応力比* ⁴
メカニ カルア	М 6	1.5×10^3	2.25×10^3	28.3	22. 9			0.47
	M8	2.3×10^3	3. 45×10^3	50.2	43.0		i	0.39
	M10	2.7×10^{3}	4. 05×10^3	78.5	69. 3			0.28
	M12	4. 7×10^3	7. 05×10^3	113.0	102.0			0.33
ンカ	M16	6. 9×10^3	10. 35×10^3	200. 9	186. 1			0. 27
	M20	10.8×10^3	16. 2×10^3	314.0	295. 4	i		0. 26
	M24	13.84×10^3	20. 76×10^3	452. 2	429.8			0. 23
	M10	7. 4×10^3	11. 1×10^3	78.5	69. 3			0.77
	M12	10.9×10^3	16. 35×10^3	113. 0	102.0	ĺ	1	0.77
	M16	20.0×10^3	30.0×10^3	200. 9	186. 1			0.77
ケミカ ルアン カ	M20	37.8×10^3	56. 7×10^3	314. 0	295. 4			0. 91
	M22	45.8×10^3	68. 7×10^3	379. 9	359. 5	ĺ		0. 91
	M24	53.6×10^3	80. 4×10^3	452. 2	429.8			0.90
	M30	88. 0×10^3	132. 0×10^3	706. 5	678. 5			0. 93
	M33	92. 6×10^3	138. 9×10^3	854. 9	824. 1	<u> </u>		0.80

※M33は新たに使用されるため、追加する。

*4:減肉後発生応力/許容応力

減肉後の応力比の算定条件及び算定結果 (せん断)

	ボルト呼び径	長期最大 許容荷重 (N)	短期最大 許容荷重*1 (N)	断面積		減肉後	⇒r r + +*3	W.444
型式				減肉前 (mm²)	減肉後 (mm²)	発生応力*2 (N/mm²)	許容応力* ³ (N/mm ²)	減肉後の 応力比* ⁴
メカニ	М6	1.5×10^3	2.25×10^3	28.3	22. 9			0. 62
	M8	2. 5×10^3	3. 75×10^3	50.2	43.0		į	0. 55
	M10	4. 7×10^3	7. 05×10^3	78. 5	69.3		Į	0.64
カルア	M12	7. 1×10^3	10.65×10^3	113.0	102.0			0.66
ンカ	M16	12. 5×10^3	18. 75×10^3	200. 9	186. 1	E	i	0. 63
	M20	19. 8×10^3	29. 7×10^3	314. 0	295. 4		ì	0. 63
	M24	26. 38×10^3	39. 57×10^3	452. 2	429.8		ĺ	0. 58
	M10	5. 1×10^3	7. 65×10^3	78.5	69. 3		i	0.69
	M12	7. 5×10^3	11. 25×10^3	113.0	102.0		į	0. 69
	M16	13. 7×10^3	20. 55×10^3	200.9	186. 1	[] e	:	0.69
ケミカ	M20	21. 3×10^3	31. 95×10^3	314.0	295. 4		i	0.68
カカ	M22	27.2×10^3	40. 8×10^3	379.9	359.5		į	0.71
	M24	31.8×10^3	47.7×10^3	452. 2	429.8			0. 69
	M30	61.5×10^3	92. 25×10^3	706. 5	678.5		i	0.85
	M33	76. 1×10^3	114. 2×10^3	854. 9	824. 1			0.87

※M33は新たに使用されるため、追加する。

関西電力株式会社

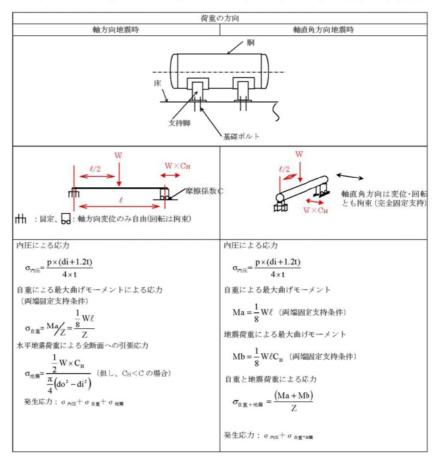
事象:耐震(機械設備)

美浜3号炉-耐震-25Rev1

タイトル 廃液蒸発装置蒸発器胴板の応力腐食割れに対する評価の具体的内容(評価 仕様、解析モデル、入力(荷重)条件、評価結果を含む)について。

説明

廃液蒸発装置蒸発器胴板の地震時発生応力が最も大きくなる箇所に、半 周の貫通き裂を想定し、地震時の発生応力が安定限界応力を上回らないこ とを確認する。


1. 評価手順

(1) 地震力

廃液蒸発装置は、耐震クラスBであるため、設置エリアに対応する 水平静的震度 と、1/2Sdの水平動的震度 (Sd床応答曲線のピーク値の1/2:添付1参照)の大きい方を用いる。

(2)発生応力の算出

下記のとおり、地震時の発生応力(地震、内圧、自重)を算出する。

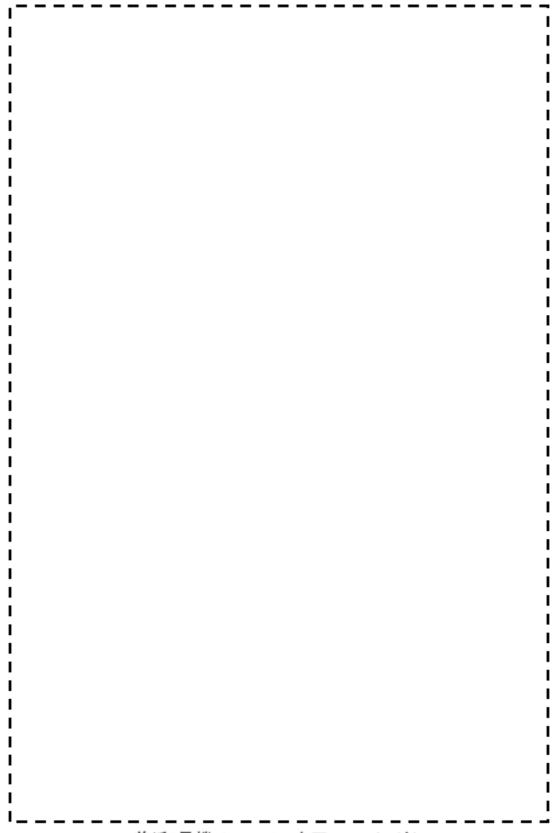
(3) 耐震安全性評価

「正味応力概念」に基づき、半周の貫通き裂を考慮した場合のき裂安定限界応力を算出*し、(2)で算出した発生応力がこれを上回らないことを確認する。なお、添付2に示すとおり蒸発器胴板の溶接線と、き裂想定部位は異なることから、Z係数を乗じた弾塑性破壊力学評価は実施していない。

※:原子力発電所配管破損防護設計技術指針 (JEAG 4613-1998)) に基づく評価方法を用いた。

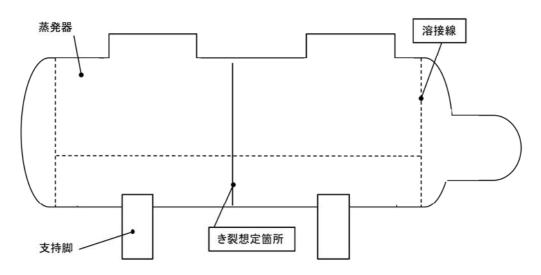
2. 評価結果

評価結果は表1のとおりであり、応力腐食割れに対する耐震安全性に 問題はない。


表1 応力腐食割れに対する耐震安全性評価結果

【評価に用いたデータ一覧】

Г	項目	単位	記号	数式	インプットデータまたは結果	
Г	板厚	mm	t	蒸発器組立図より		
ı	き製角度		2θ			
ı	胴外径	mm	D _o	D _i +t×2		
ı	胴内径	mm	Di	蒸発器組立図より	· •	
ı	内圧	MPa	Р	蒸発器組立図より(最高使用圧力:1kg/cm²)	ı I	
	蒸発器重量	kg	W _o	蒸発器既工認より (蒸発器+#1精留塔+#2精留塔, 満水時重量)	1	
条	設計降伏点	MPa	Sy	SUS316L、150°C JSME Part5 表8より	1	
件	設計引張強さ	MPa	Su	SUS316L、150°C JSME Part5 表9より	· •	
l	設計地震力	-	Сн	PLM耐震条件(動的地震力)より: 原子炉補助建屋 FRS(質点番号:7)のピーク 1/2の値	· •	
ı	外半径	mm	R _o	D ₀ /2	ı .	
ı	内半径	mm	- R _i	D _i /2	. 1	
ı	平均半径	mm	R _m	(外半径+内半径)/2	· •	
L	支持脚中心間距離	mm	L	蒸発器組立図より	· •	
	流動応力(許容応力)	MPa	Sf	$(S_y+S_u)/2$		
	膜応力	MPa	P _m	$P \times D_o / (4 \times t)$		
許容	き裂半角度	٠	θ		1	
存応	_	rad	α	θ /180 × π		
カ		rad	β	$((\pi - \alpha) - (P_m/S_t) \times \pi)/2$		
ı	破壊時曲げ応力	MPa	P _b '	$2 \times S_f \times (2\sin \beta - \sin \alpha) / \pi$	1	
L	安定限界応力	MPa	Pf	$P_m + P_b'$		
軸方	内圧による応力	MPa	$\sigma_{ m ME}$	$P \times (D_i + 1.2t) / (4 \times t)$	•	
	自重による曲げモーメントによる応力	MPa	の自動	(W ₀ × 9.80665 × L/8)/Z	1	
126	水平地震力による応力	MPa	の地震	$(W_0 \times 9.80665 \times C_H / 2) / (\pi / 4 \times (D_0^2 - D_i^2))$		
時	発生応力	MPa	σ_{tt}	σ _{内圧} +σ _{白重} +σ _{地震}	•	
軸	内圧による応力	MPa	$\sigma_{ m pl}$	$P \times (D_i + 1.2t) / (4 \times t)$	· .	
角	自重による曲げモーメント	N∙mm	M _{BE}	W ₀ × 9.80665 × L ∕ 8		
100			M地震	(W ₀ × 9.80665 × L ∕ 8) × C _H		
	地自軍と地震による応力		の 白重+地震	(M _{向東} +M _{地震})/Z	' !	
時	発生応力	MPa	の軸直角	 の 内圧 十 の 白重 + 地震		
	※以下の計算により真円筒での断面係数(Z)を算出した。					


※以下の計算により真円筒での断面係数(Z)を算出した。断面係数 Z mm³ (D₂⁴-D₁⁴)/32D₂

以上

美浜3号機 AB EL.17 水平AB07 (sd波) 水平方向 減衰1.0%

図1 美浜3号機 原子炉補助建屋 床応答曲線(全波包絡FRS)

※き裂の想定箇所は2本の支持脚の中間の位置と想定した。

廃液蒸発装置蒸発器胴板の溶接線とき裂想定部位との関係図