Regulating Nuclear Power in an Active Earth

Allison Macfarlane George Washington University May 21, 2015 Nuclear Regulation Authority, Tokyo Japan

Successful Nuclear Power

- Nuclear power needs public support in democracies
- First Ingredient is a credible, independent regulator
- Second ingredient is set of strong, enforceable regulations

Importance of Independent Regulator

- No political or industry influence
- Well-funded
- Adequate technical expertise
- Full support of central government
- The seal enforcement powers to shut down facilities
- No independent regulator: country at great risk in terms of economics and public health

Credible Regulator Essential

- No credible regulator no public trust – no public support for nuclear power
- Public support lost when
 - Regulator is not open and transparent
 - Open engages with public, industry, all interested parties
 - Transparent makes all decisions in public and all documents available

Natural Hazards in Regulation of Operating Nuclear Reactors

- Earthquakes
- Volcanoes
- Floods
- Wind
 Tornadoes
 Typhoons
- Orought
- Heat/Cold
- Snow/Ice
- [Asteroids]

Floods

Storm surge

- 🏵 Coastal
- River/lake

Tsunami

- River floodingStorm event
 - Spring snow melt
- Seiche
- Dam break

Ft Calhoun Nuclear Power Plant, Nebraska, US, June, 2011

Wind

- Wind-generated missiles from tornados and typhoons
- Wind damage to structures

Tornado (water spout) photo from Maryland's Calvert Cliffs nuclear power Plant, US

Extreme Temperatures

Heat

- Loss of heat sink
 - Millstone unit 2, 2012

Cold

- Ice blocking water intake
 Ice plug Millstone, 1996
- Snow/Ice
 - Strength of roofs/other structures
 - Chernobyl roof collapse in 2013

Collapsed portion of Chernobyl sarcophagus roof

Earth Systems and Regulation of the "Back End" of the Fuel Cycle

- Similar considerations to operating reactors:
 - Spent fuel pools
 - Ory cask storage
 - Reprocessing facilities

- Additional considerations
 - Repository

Deep Geologic Repositories

- Siting Considerations (from IAEA, 2003)
 - Long-term tectonic stability
 - Seismic issues less shaking at depth than on surface
 - Mizunami
 experience
 Excavatable rock

Deep Geologic Repositories

- Low-groundwater content and flow
- Stable geochemistry at depth
 - reducing environment
 - equilibrium between rock and water
- Also need
 - Deep site to avoid erosion
 - No potential for human intrusion

Earth Systems and Regulation of the "Back End" of the Fuel Cycle

Accident aftermath – Fukushima

- Groundwater infiltration
- Groundwater
 contamination
- Coastal contamination
- Seawater/seabed contamination
- Land contamination

How to regulate for natural hazards

- Periodically review state
 of geologic knowledge
 - US NRC currently requiring reactors to reevaluate seismic and flooding hazard
 - US NRC considering requiring periodic reevaluations of these hazards
 - US NRC considering reevaluating other natural hazards

Considerations for Natural Hazards for Future Regulations

- Complex phenomena in complex systems
- Can be difficult or impossible to predict with accuracy in time and magnitude of events
- Propensity to normalize periods of quiet
- Risks can be severeFukushima example

Geologic Knowledge Changes over Time

Learn more over time

Plate tectonic theory

 Accepted in 1970s, after many plants built in US

Examples

- Seismology post Sumatra earthquake
- Tsunami risk in Japan

Considerations for Future Regulations

- Use of Probabilistic Risk Assessment
 - May provide some insights
 - Discounts low probability, high consequence events
 - (Fukushima)
 - Assumes periodicity of events that may not exist
 - Output only as good as the input
 - US NRC uses seismic PRA but not flooding PRA (yet)

Results of PRA for U.S. Energy Department's Yucca Mountain assessment

The Path Forward

- Grow trust in the regulator by making clear the independence of the regulator
- Treat natural hazards
 openly and transparently
- Use most current state of knowledge to establish regulations

- Use both probabilistic and deterministic methods
 - Be mindful of uncertainty in data and its consequences for our understanding of events
 - Err on the side of precaution
- Periodically revisit regulations based on new understanding of hazards

