	1	————————————————————————————————————
No.	高浜2-熱時効-5rev1	事象:2相ステンレス鋼の熱時効
質問	能喪失)におけるプラント条件(ピ	5頁) こついて、重大事故等時(原子炉停止機 ーク温度360℃、ピーク圧力18.5MPa) 「ることはないとした考え方及び具体的
回答	の具体的評価内容を添付-1に示し 重大事故等時における健全性評価が最も厳しくなるピーク温度360℃ 荷重はSs地震動による荷重として なお、通常運転時の条件から温度 故等時の条件においても従来評価力	版への入力条件としては、プラント条件 、ピーク圧力18.5MPaとしており、地震

1. 代表点の抽出

重大事故等時の健全性を確認するにあたっては、評価対象部位の中で応力が最大であり、通常運転時の評価における評価点となっているホットレグ直管、エルボの曲率部で応力が大きく評価の厳しくなるSG出口40°エルボを代表点とする。

なお、重大事故等時の入力条件において応力最大部位に変更がないことを確認するため、通常運転時の応力が3番目に高いSG入口50°エルボについても重大事故等時の応力を算出し、評価部位における応力の大小関係に逆転が無いことを確認している。

評価部位	フェライト量	使用温度	通常運転時(参考)※	重大事故等時※
11 111 122	[%]	[℃]	応力[MPa]	応力[MPa]
ホットレグ直管	約 12.3	322. 8	約173	約183
SG入口50° エルボ	約 13.8	322. 8	約 128	約135
SG出口40° エルボ	約 11.9	288. 6	約 155	約161

[※]小数点第1位切り上げ

2. フェライト量の算出

フェライト量は、ミルシートの化学成分から、ASTM A800に基づき算出している。

評価部位			ſĿ	2学成分(溶鋼分析	·) %			Cre/Nie (注1)	フェライト量 (注2)
計11四百71年	С	Si	Mn	Cr	Ni	Мо	Cb (Nb)	N		F%
ホットレグ直管										約12.2
SG出口40° エルボ										約11.8

- (注1) ASTM A800の7.1.2参照
- (注2) ASTM A800のFig. X1.1参照

3. 評価用Jmatの決定

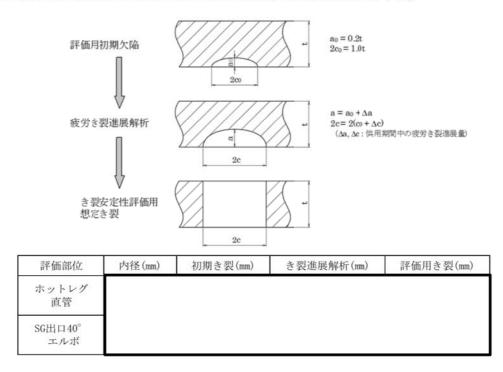
き裂進展抵抗値(Jmat値)は、電共研で改良された脆化予測モデル(H3Tモデル: Hyperbolic-Time, Temperature Toughness)を用いて、評価部位のフェライト量を基に求める。

なお、重大事故等時の温度条件(360°)と の温度条件で採取されたデータの下限値(H3Tモデルの下限線)には温度条件に違いがあるが、過去に実施した破壊靭性試験の結果から、 り J 値と の J 値に大きな差が認められず、それぞれの J 値は H3Tモデルの下限線以上であることから、 360° の J 値をH3Tモデルの下限線として想定する現在の評価は重大事故時の条件においても適用でき、妥当であると判断している。 Jmatの J_{Ic} 、 J_{6} の値は以下のとおりである。

き裂進展抵抗 (Jmat)	J_{Ic} (kJ/m ²)	J_6 (kJ/m ²)
ホットレグ直管		
SG出口40° エルボ		

	内は商業機密に属しますので公開できません
--	----------------------

4. 評価部位の応力


重大事故等時の内圧、自重、熱膨張及び地震荷重を考慮した応力値を示す。

		内圧		曲に	げ応力			軸力に	よる応力		合算値
評価部位	評価条件	による 応 力 (MPa)	自重 (%)	熱 (%)	地震 (Ss) (%)	合計 (MPa)	自重 (%)	熱 (%)	地震 (Ss) (%)	合計 (MPa)	(MPa) (小数点第1位 切り上げ)
ホットレグ	重大事故等時										約183
直管	通常運転時 (参考)										約173
SG出口40°	重大事故等時										約161
エルボ	通常運転時 (参考)										約155

5. Jappの決定

(1)評価用き裂

き裂安定性評価を保守的に行うために評価用き裂を貫通き裂とする。

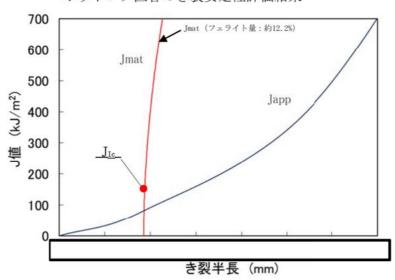
(2) FEM解析

評価用き裂と表1に示す評価条件を入力条件として、FEM(有限要素法)解析により、破壊力(Japp値)を求める。

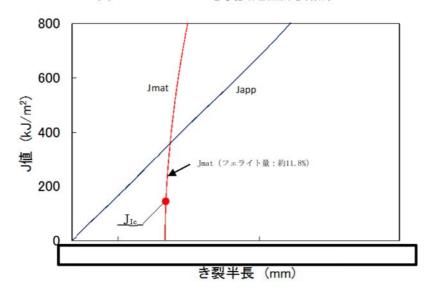
Japp の算出には、作用荷重と材料物性(応力-歪関係)を使用する。また、材料物性(応力-歪関係)には、通常運転時の評価では、保守的な条件としてフェライト量が小さく、時効していない材料の応力-ひずみ関係を使用しているが、重大事故時等条件を考慮した評価においても同じものを使用している。重大事故時等条件

(360°C) を考慮した場合の応力-ひずみ関係はフェライト量、温度条件、時効劣化の有無の影響を総合すると、通常運転時の評価に使用する応力-ひずみ関係より大きくなるため、今回の評価で使用した応力-ひずみ関係は保守的な評価条件となる。

なお、各き裂長さにおけるJappは以下のとおり。


き裂長さ	1t	3t	5t
ホットレグ直管(kJ/m²)			
SG出口40°エルボ (kJ/m²)			

6. き裂安定性評価


重大事故等時のホットレグ直管およびSG出口40°エルボにおけるき裂安定性評価結果を下図に示す。

重大事故等時においても、き裂進展抵抗がき裂進展力を上回ること、およびき裂進展抵抗とき裂進展力の交点で、き裂進展抵抗の傾きがき裂進展力の傾きを上回っていることから、配管は不安定破壊することはなく、重大事故等時のプラント条件を考慮しても健全であることが判断できる。

ホットレグ直管のき裂安定性評価結果

SG出口40° エルボのき裂安定性評価結果

外径[mm] 外径[mm] 外径[mm] 外径[mm] 外径[mm] 分径[mm] 外径[mm] 学数形状 自重 熱 地震 所 内圧[Mra] 前 地 地 地 地 内圧[Mra] 地 地 地 地 地 地 イヤースン 大阪・コ、3(機性域) ・コ・3(機性域) イアソンは 地 地 地 地 地 地 地 イマリンと フェライト量 生産が低い場所のありたことかの計画を参考にしている。本電共研では2つの試験片について引展り試験を実施し、結果がほぼ同等であったことかの関係している。本電共研では2つの試験片について引展り試験を実施し、結果がほ同等であったことがの指述が低い 会 会 中 地 市 市 市 市 が 加 市 市 市 市 市 が 中 地 市 市 市 市 が 中 地 市 市 市 が 中 市 市 市 市 が 中 市 市 市 市 が 市 市 市 市 市 が 市 市 市 市 市 が 市 市 市 市 市 が 市 市 市 市	A 27-1-1		ポットレ	レグ直管	茶	評価条件		SG出口40°	0 工ルボ	
1	内径[mm] 外径[mm]									
a.j 自重 熱 ン 自重 熱 ン My Mz My My B. J. = 0.3 (弾性域) ν = 0.5 (塑性域) フェライト量が低い非時効材の応力・で得られた知見を参考にしている。の試験片のデータを用いて応力・ひす材を用いることはより安全側の評価材を用いることはより安全側の評価を添売が高	き裂形状			周方向貫	通き裂(き	製長さ:1t	3t,	重類)		
a] 自重	荷重									
1	内压[MPa]									
お 自重 熱 my my my my a] n=0.3(弾性域)、 n=0.5(塑性域) フェライト量が低い非時効材の応力で得られた知見を参考にしている。の試験片のデータを用いて応力-ひす材を用いることはより安全側の評価が応 が が が が が が なを用いることはより安全側の評価 が が が なを用いることはより安全側の評価 が が なをがびずみ[8]	軸力[kN]	車目	藻	地震	全位	合計	自重		地震	수류
m) My Mz My My My My My My my min n=0.3 (弾性域)、 ν=0.5 (塑性域) フェライト量が低い非時効材の応力で得られた知見を参考にしている。の試験片のデータを用いて応力-ひす材を用いることはより安全側の評価が応う。	曲げモーメン	車目	操	地震	their	石丰	自	一	地震	<u>†</u> 11.
a.	ト [kN・m]				Mz		-		-	
a) v=0.3(弾性域)、v=0.5(塑性域) フェライト量が低い非時効材の応力で得られた知見を参考にしている。の試験片のデータを用いて応力-ひす材を用いることはより安全側の評価がある。	生値									
以上 v=0.3(弾性域)、v=0.5(塑性域) フェライト量が低い非時効材の応力。 で得られた知見を参考にしている。 の試験片のデータを用いて応力-ひす材を用いることはより安全側の評価 が高が を周いることはより安全側の評価 をある。 会を用いることはより安全側の評価 会を用いることはより安全側の評価 会を用いることはより安全側の評価	ング率[MPa]									
フェライト量が低い非時効材の応力で得られた知見を参考にしている。 の試験片のデータを用いて応力-ひす材を用いることはより安全側の評価 ⁵⁵ ⁵⁶ ⁵⁷ ⁵⁸ ⁵⁸ ⁵⁸ ⁵⁸ ⁵⁸ ⁵⁸ ⁵⁸ ⁵⁸	ポアソン比	ν=0.3(弾性域)、								
「MPa]	カーひずみ 系	フェライト量が但 で得られた知見を の試験片のデータ 材を用いることは	5い非時効材の応え 2参考にしている。 7を用いて応力-ひ 1より安全側の評価		用いる。本 2つの試験, した。Japp	s評価デー、 片について が値は応力・	7 は電共研「1 ½ 引張り試験を集 -ひずみ線図のT	K冷却材管の時交 ぎ施し、結果がほ ご部の面積に比例	が劣化に関する研 tぼ同等であった ilするため、強度	究 (STEP1)」 ことから 1 へ が低い非時效
非時効材のフェライト量 (化学成分 (溶鋼分析) % C Si Mn Gr Ni M0 Cb (Nb) N						応力 MPa]				
(上学校分 (溶鋼分析) % Cre/Nie C Si Mn Cr Ni MO Cb (Nb) N Cre/Nie C Si Mn Cr Ni MO Cb (Nb) N Cre/Nie C Si Mn Cr Ni MO Cb (Nb) N Cre/Nie C Si Mn Cr Ni MO Cb (Nb) N Cre/Nie C Si Mn Cr Ni MO Cb (Nb) N Cre/Nie C Si Mn Cr Ni MO Cb (Nb) N Cre/Nie C Si Mn Cr Ni MO Cb (Nb) N Cre/Nie C Si Mn C C Si M								非時効材のフ	7ェライト量	
C Si Mn Cr Ni MO Cb (Nb) N 公称ひずみ[%]		公标一					化学成分 (溶鋼分析)	%		
		슬무[MPa]					Si	Ni	(Nb) N	
公称ひずみ[%]		1					ω.			
		,	公称ひずみ[%]			٦				

内は商業機密に属しますので公開できません。

	<u> </u>	関西電力株式会社
No.	高浜2-絶縁低下-1	事象: 絶縁低下
質問	(別冊-4容器-3.3電気ペネトレーショ表2.3-3の加速熱劣化の試験条件に関係を算定する際に考慮した部位、材料ルギーの根拠についての説明を提示す	関し、60年間の運転期間に相当する条 、活性化エネルギー及び活性化エネ
回 答	「高浜1-絶縁低下-1」の回答と以 ・資料中の"高浜1号炉"は"高浜2号炉 ・修正後の加振試験の妥当性説明の想 2号炉では(0.70G)とする。	

No. 高浜 2 - 絶縁低下 - 2 事象: 絶縁低下 (別冊-4容器-3.3電気ペネトレーション-13頁) 表2.3-3の設計基準事故時雰囲気暴露の全ての試験条件が、実機の設計基準事故時条件を包絡していることの根拠を提示すること。 「高浜 1 - 絶縁低下 - 2」の回答と同様です。 (資料中の"高浜 1 号炉"は"高浜 2 号炉"と読み替える。) なお、環境条件(温度、放射線)の実測値については、高浜 1・2 号炉がツインユニットであることを踏まえ、両ユニットの実測値の厳しい方の値で統一して評価書に記載しています。 以」		-	第四電刀休八云 作
質問表2.3-3の設計基準事故時雰囲気暴露の全ての試験条件が、実機の設計基準事故時条件を包絡していることの根拠を提示すること。 「高浜1-絶縁低下-2」の回答と同様です。 (資料中の"高浜1号炉"は"高浜2号炉"と読み替える。) なお、環境条件(温度、放射線)の実測値については、高浜1・2号炉がツインユニットであることを踏まえ、両ユニットの実測値の厳しい方の値で統一して評価書に記載しています。	No.	高浜2-絶縁低下-2	事象: 絶縁低下
(資料中の"高浜1号炉"は"高浜2号炉"と読み替える。) なお、環境条件(温度、放射線)の実測値については、高浜1・2号炉がツインユニットであることを踏まえ、両ユニットの実測値の厳しい方の値で統一して評価書に記載しています。	質問	表2.3-3の設計基準事故時雰囲気暴露	麔の全ての試験条件が、実機の設計基
	回 答	(資料中の"高浜1号炉"は"高浜2号 なお、環境条件(温度、放射線)の がツインユニットであることを踏まえ	号炉"と読み替える。) 実測値については、高浜1・2号炉 、両ユニットの実測値の厳しい方の

		関西電力株式会社
No.	高浜2-絶縁低下-3	事象:絶縁低下
質問	(別冊-4容器-3.3電気ペネトレーショ 高浜2号炉のピッグテイル型電気ペネ 供試された代表型式の製造メーカを説	ネトレーションと長期健全性試験に
回 答	「高浜1-絶縁低下-3」の回答と同(資料中の"高浜1号炉"は"高浜2号	TO STATE OF THE ST

	-	関西電力株式会社
No.	高浜2-絶縁低下-4	事象: 絶縁低下
質問	(別冊-4容器-3.3電気ペネトレーショ表2.3-5について、39年間の通常運車件を算定する際に考慮した部位、材料ルギーの根拠を提示すること。	云時の使用条件に基づく熱劣化試験条
回答	「高浜1-絶縁低下-4」の回答と同	様です。

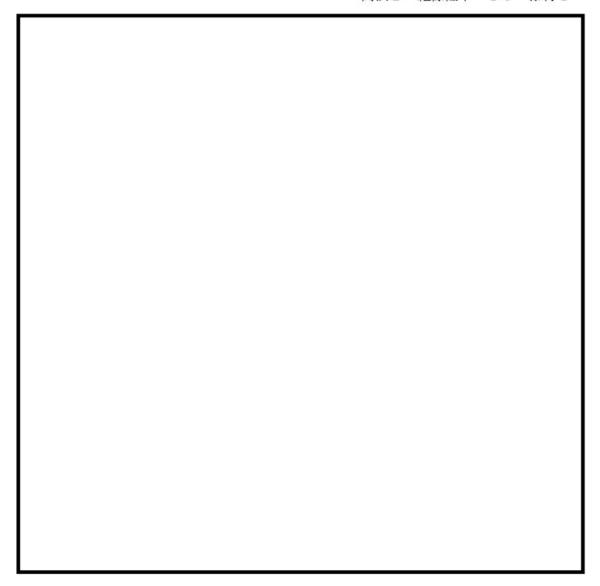
		関西電力株式会社
No.	高浜2-絶縁低下-5	事象:絶縁低下
質問	(別冊-4容器-3.3電気ペネトレーショ 「美浜2号炉で21年間使用したケーン 供試ケーブルの美浜2号炉における使用 根拠を提示すること。	ブルを供試ケーブルとし」とあるが、
回答	「高浜1-絶縁低下-5」の回答と同(資料中の"高浜1号炉"は"高浜2号炉	100 By 110 By 100 By

	ş	関西電力株式会社
No.	高浜2-絶縁低下-6	事象: 絶縁低下
質問	(別冊-4容器-3.3電気ペネトレーショピッグテイル型、ブッシング型、三いて、これまでに取替実績がある場合取替時期を提示すること。	重同軸型電気ペネトレーションにつ
回答	高浜2号炉では、これまでに電気ペせん。	ネトレーションの取替実績はありま

	<u> </u>	関西電力株式会社
No.	高浜2-絶縁低下-7	事象:絶縁低下
質問	(別冊-4容器-3.3電気ペネトレーショ 高浜2号炉のピッグテイル型電気ペネ 絶縁抵抗測定を実施した代表電気ペネ すること。	ネトレーションと美浜1号炉において
回答	「高浜1-絶縁低下-7」の回答と同(資料中の"高浜1号炉"は"高浜2号	The same of the sa

		関西電力株式会社
No.	高浜2-絶縁低下-8	事象: 絶縁低下
質問	(別冊-4容器-3.3電気ペネトレーショ ブッシング型電気ペネトレーション すべき部位の使用材料を提示すること	の製造メーカ、構造及び劣化を考慮
回答	「高浜1-絶縁低下-8」の回答と同(資料中の"高浜1号炉"は"高浜2号	TO SECTION OF THE PROPERTY OF THE PARTY OF T

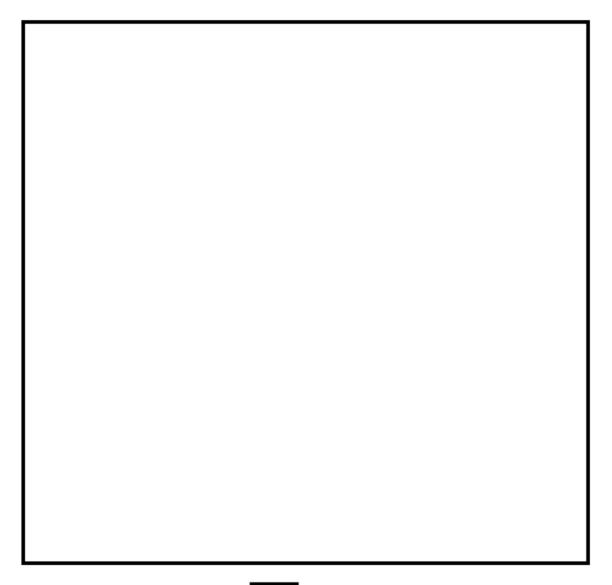
		関西電力株式会社	
No.	高浜2-絶縁低下-9	事象: 絶縁低下	
質問	性試験に供試された実機相当品)の製造部位の使用材料 ②三重同軸型電気ペネトレーション 期健全性試験に供試された実機相当品	ついての説明を提示すること。 同軸型電気ペネトレーション(高浜2号炉の対象機器及び長期健全 供試された実機相当品)の製造メーカ、構造及び劣化を考慮すべき 用材料 同軸型電気ペネトレーションについて、高浜2号炉の対象機器と長	
回答	の回答①と同様です。 ② 三重同軸型電気ペネトレールモデルであるため、構造、材質はす。また、三重同軸型電気ペ 試品と同じ製造メーカであることが ③「高浜1-絶縁低下-9」の回答と(資料中の″高浜1号炉″は″高浜2号/4)の(1)長期健全性試験の内	で、長期健全で、長期健全で、大力は、で、大力は、この材料は「高浜1ー絶縁低下ー9」であると考えておりままからに同一であると考えておりまるトレーションの絶縁材の材質は供いら同等と考えております。	


	·		関西電力株式会社
No.	高浜2-絶縁低下-10	事象: 絶縁低下	
質問	(別冊-8ケーブル-共通) 以下のケーブルについて、製造メー ①難燃KKケーブル ②難燃PHケーブル ③難燃三重同軸ケーブル	力を説明すること。	
回答	「高浜1-絶縁低下-10」の回答と	同様です。	

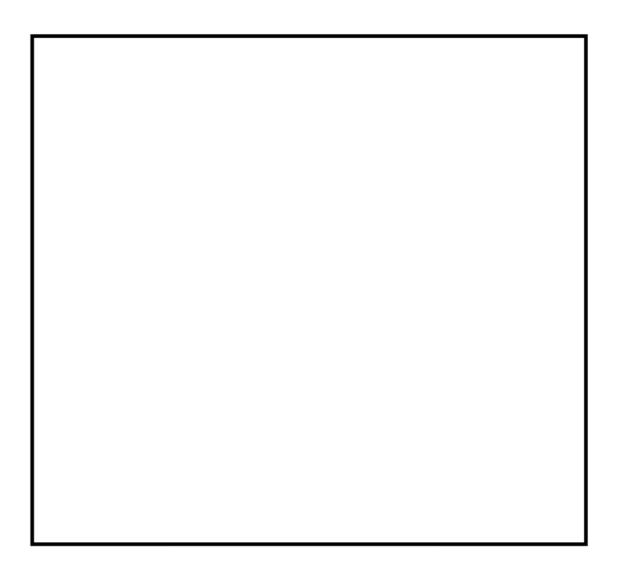
	<u> </u>	関 関 関 型 電 力 株 式 会 社
No.	高浜2-絶縁低下-11	事象: 絶縁低下
質問	(別冊-8ケーブル-共通-(下記ケーブル等の健全性評価の記載ページ)) 以下のケーブル等について、電気学会推奨案等(ケーブル接続部についてはIEEE規格)に基づく各ケーブルの長期健全性評価試験において、通常運転時相当の熱劣化に相当する加速熱劣化条件を算定するために用いた絶縁体語の活性化エネルギーの値及びその値の根拠について提示すること。 ①難燃高圧CSHVケーブル ②難燃KKケーブル ③難燃PHケーブル ⑤PAケーブル(長期健全性試験を実施した製造メーカのケーブル) ⑥VVケーブル(長期健全性試験を実施した製造メーカのケーブル) ⑦三重同軸ケーブル ⑧類燃三重同軸ケーブル ⑨気密端子箱接続 ⑩直ジョイント ⑪原子炉格納容器外電動弁コネクタ接続 ⑫三重同軸コネクター1接続	
回答	「高浜1-絶縁低下-11」の回答と	同様です。

	<u> </u>	関西電力株式会社
No.	高浜2-絶縁低下-12	事象: 絶縁低下
質問	(別冊-8ケーブル-共通-(下記ケーブル等の健全性評価の記載ページ)) 以下のケーブル等について、電気学会推奨案等(ケーブル接続部についてはIEEE規格)に基づく各ケーブルの長期健全性評価試験における設計基準事故時相当の試験条件が、実機の設計基準事故時条件を包絡していることの根拠について説明を提示すること。 ①難燃KKケーブル ②難燃FHケーブル ③難燃三重同軸ケーブル ④気密端子箱接続 ⑤直ジョイント ⑥三重同軸コネクター1接続	
回答	「高浜1-絶縁低下-12」の回答と	同様です。

	,
No.	高浜2-絶縁低下-13 事象:絶縁低下
質問	(別冊-8ケーブル-共通-(下記ケーブル等の健全性評価の記載ページ)) 高圧ケーブル及び事故時雰囲気環境下において機能要求のある低圧ケーブル・同軸ケーブルについて、取替実績(ケーブル種類、製造メーカ、取替理由、機器数、取替時期)を提示すること。
回答	高圧ケーブル及び事故時雰囲気環境下において機能要求のある低圧ケーブル・同軸ケーブルについては、予防保全、火災防護対策又は主設備取替等に伴い、以下の通り取替えを行っています。
	(1) 高圧ケーブル A. 難然高圧CSHVケーブル a. 海水ポンプモータケーブル 第8回定期点検(1985~1986年度)、4セット、 第20回定期点検(2002年度)、1セット、 b. 非常用DGケーブル 第16回定検(1996~1997年度)及び 第19回定検(2000年度)、18セット、メーカ未特定 c. 一次冷却材ポンプモータ、チラーユニット用圧縮機モータ、充て ん/高圧注入ポンプ及び海水ポンプモータケーブル 第27回定検(2011年度~)*1、14セット、メーカ選定中 (2) 低圧ケーブル*2 A. 難然PHケーブル a. 事故時機能要求のある低圧ケーブル 取替時期不明*3、1本 第10回定検(1988~1989年度)、24本 第23回定検(2006年度)、2本 第25回定検(2008~2009年度)、9本 第26回定検(2010年度)、2 6本 第27回定検(2011年度~)*1、3 6本 B. 難然KKケーブル a. 事故時機能要求のある低圧ケーブル 第3回定検(1992年度)、2本 第17回定検(1998年度)、7本 (3) 同軸ケーブル A. 難然三重同軸ケーブル a. 格納容器高レンジェリアモニタケーブル 第7回定検(1984~1985年度)、5本、第8回定検(1985~1986年度)、3本、
	※1:既に取替方針等が定まっているケーブルを含む ※2:電動弁、電磁弁、伝送器、RTD及び加圧器後備t-タ用のケーブル ※3:評価上は運転開始から取替えられていないものとして整理


		奥四電刀株式会 位
No.	高浜2-絶縁低下-16	事象: 絶縁低下
質問	(別冊-6弁-2.1電動装置-2頁) 対象機器のうち、設計基準事故時雰 ものについて名称、台数、直流・交流 系統図等を用いて設置個所を提示する	
回 答	設計基準事故時雰囲気環境下においび台数について、以下に記載します。なお、電動弁の設置箇所は添付1~ 名 称 ループ余熱除去系第1入口 ループ余熱除去系第2入口 加圧器逃がし弁元弁 アキュームレータ出口弁 RCPサーマルバリア冷却が RCP軸受冷却水出口第1限 封水戻りラインC/V第1限 Aループ高温側サンプル第1 R-11/12入口ライン格	3の配置図を参照願います。

EL ー フロア


No.	弁番号	名 称
1	2M0V-8702A	Aループ余熱除去系第1入口弁
2	2M0V-8702B	Bループ余熱除去系第1入口弁
3	2M0V-8701A	Aループ余熱除去系第2入口弁
4	2MOV-8701B	Bループ余熱除去系第2入口弁
(5)	2M0V-8112	封水戻りラインC/V第1隔離弁

内は商業機密に属しますので公開できません

EL- フロア

No.	弁番号	名 称
1	2MOV-8808A	A-アキュームレータ出口弁
2	2MOV-8808B	B-アキュームレータ出口弁
3	2MOV-8808C	C-アキュームレータ出口弁
4	2MOV-5299	RCPサーマルバリア冷却水出口第1隔離弁
(5)	2MOV-5298	RCP軸受冷却水出口第1隔離弁
6	2MOV-5004A	Aループ高温側サンプル第1隔離弁
7	2MOV-16661	R-11/12入口ライン格納容器隔離弁

EL- フロア

No.	弁番号	名 称
1	2MOV-8000A	A-加圧器逃がし弁元弁
2	2MOV-8000B	B-加圧器逃がし弁元弁

内は商業機密に属しますので公開できません

23		関西電力株式会社
No.	高浜2-絶縁低下-17	事象: 絶縁低下
質問	(別冊-6弁-2.1電動装置-21頁) 表2.3-3の加速熱劣化の試験条件に関し、以下についての説明を提示すること。 ①試験条件が高浜2号炉の環境条件に余裕をみた75℃-60年間の運転を 包絡していることの根拠 ②試験条件を設定する際に考慮した部位、材料、その材料の活性化エネルギー、および活性化エネルギーの値の根拠	
回答	「高浜1-絶縁低下-17」の回答と(資料中の"高浜1号炉"は"高浜2号	

下の			
要される所のはいることの根拠を提示すること。 - 0.45MPa: 国内PWRプラントの包絡条件 高浜2号炉の設計基準事故時の原子炉格納容器圧力の最高値は、約 0.26MPa(2.67kg/cm²G)(工事計画認可申請書の記載値)であり、上記の 圧力条件に包絡されています。 - 3分: IEEE Std.382-1996より - 23回: 下記参照 IEEE Std.382-1996より - 23回と設定しております。 高浜2号炉の設計基準事故時に機能要求がある弁電動装置は全て第 1 3回以降取替之実績があることから、それ以降の期間において、事故 時雰囲気で機能要求のある電動弁駆動装置が外部加圧に曝露される格 納容器全体漏洩試験は、 - 如便度で実施しており、第26回定期検査時までに 合き。回の実績があります。 また、次の格納容器全体漏洩試験は第29回定検を予定しており、運 転開始後60年となる2035年(17年間=15サイクル※2)の間 に 実施されることとなり、上記実績と合わせて計10回で、試験条件(23回)に包絡されます。 ※1:長期停止中(~2019予定)となっているが、保守的に停止は2 017年度末までと想定 ※2:プラント稼働率を85%と仮定	No.	高浜2-絶縁低下-18	事象: 絶縁低下
高浜2号炉の設計基準事故時の原子炉格納容器圧力の最高値は、約0.26MPa(2.67kg/cm²G)(工事計画認可申請書の記載値)であり、上記の圧力条件に包絡されています。 ・ 3分:IEEE Std.382-1996より ・ 23回:下記参照 IEEE Std.382-1996 Part III 3.3に記載の15回(40年相当)を60年に換算した回数として23回と設定しております。高浜2号炉の設計基準事故時に機能要求がある弁電動装置は全て第13回以降取替え実績があることから、それ以降の期間において、事故時雰囲気で機能要求のある電動弁駆動装置が外部加圧に曝露される格納容器全体漏洩試験は、の頻度で実施しており、第26回定期検査時までに合意回の実績があります。また、次の格納容器全体漏洩試験は第29回定検を予定しており、運転開始後60年となる2035年は7年間=15サイクル**2)の間に上東施されることとなり、上記実績と合わせて計10回で、試験条件(23回)に包絡されます。 ※1:長期停止中(~2019予定)となっているが、保守的に停止は2017年度末までと想定 ※2:プラント稼働率を85%と仮定	質問	表2.3-3の圧力劣化の試験条件が、高	高浜2号炉の60年間の運転を包絡して
	回答	高浜2号炉の設計基準事故時の 0.26MPa(2.67kg/cm²G)(工事計画語 圧力条件に包絡されています。 ・ 3分:IEEE Std.382-1996より ・ 23回:下記参照 IEEE Std.382-1996 Part III3.31 年に換算した回数として23回と 高浜2号炉の設計基準事故時に 13回以降取替え実績があること 時雰囲気で機能要求のある電動弁 納容器全体漏洩試験は、 回の実績があります。 また、次の格納容器全体漏洩試験は、 回の実績があります。 また、次の格納容器全体漏洩試験は、 国の実績があります。 また、次の格納容器全体漏洩試験は、 上記を表して2035年 は、 を開始後60年となる2035年 は、 上記を表して2019予定) の17年度末までと想定	原子炉格納容器圧力の最高値は、約認可申請書の記載値)であり、上記の設定しております。機能要求がある弁電動装置は全て第から、それ以降の期間において、事故駆動装置が外部加圧に曝露される格しており、第26回定期検査時までに験は第29回定検を予定しており、運まで同じ頻度で漏洩試験を実施したまり、年(17年間=15サイクル*2)の間記実績と合わせて計10回で、試験条となっているが、保守的に停止は2

	<u> </u>	関内電力株式会社
No.	高浜2-絶縁低下-19	事象:絶縁低下
質問	(別冊-6弁-2.1電動装置-21頁) 表2.3-3の機械的劣化の試験条件につ数が約1000回であるとしていることの	ついて、高浜2号炉の60年間の動作回 根拠を提示すること。
回答	ループ余熱除去系第1入口弁電動装(2007.8)から第27回定期検査解列クル**1における開閉回数の平均値は終までと同じ頻度で定期検査を実施する60年間の開閉回数は1000回未満14(回/保全サイクル)×{(26(将×60(年)}=624(回)<1000(回) ※1:定期検査解列日から次回定期検※2:第1回定期検査解列日から第22号炉の運転年数	日前日 (2011.11) までの3保全サイ 日14回/保全サイクルであり、これ と仮定すると、下記の計算により、 となります。 R全サイクル)/35(年)**2)

21	関西電力株式会	
No.	高浜2-絶縁低下-20	事象: 絶縁低下
質問	(別冊-6弁-2.1電動装置-21頁) 表2.3-3において、設計基準事故時別の設計基準事故時条件を包絡している	雰囲気暴露の全ての試験条件が、実機 ことの根拠を提示すること。
回答	「高浜1-絶縁低下-20」の回答と(資料中の"高浜1号炉"は"高浜2号	2012 PM 2013 12 12 12 12 12 12 12 12 12 12 12 12 12

		関西電力株式会社
No.	高浜2-絶縁低下-21	事象:絶縁低下
質問	(別冊-6弁-2.1電動装置-21頁) 表2.3-4の判定に係るメーカ基準の内を提示すること。	内容及びその妥当性についての説明
回答	「高浜1-絶縁低下-21」の回答と	同様です。

	T	-	因日电	刀休式会 位
No.	高浜2-絶縁低下-22	事象:絶	縁低下	
質問	(別冊-6弁-2.1電動装置-21頁) 設計基準事故時雰囲気環境下にお て、これまでに取替実績がある場合 替時期を提示すること。	[[일본다.]	맛은 하는 경쟁 맛있었다면서 얼마를 보다면 했었다.	
回答	回答 2 設計基準事故時雰囲気環境化において機能要求のある弁電動装置については、すべて取替え実績が有ります。なお取替え理由については、主なり由は駆動装置の耐環境化となります。機器数、型式、取替え時期についな以下の通りです。			主な理
	対象弁駆動部	取替時期	型式	台数
	アキュームレータ出口弁	16回定検	SMB-3	3台
	ループ余熱除去系第1入口弁	16回定検	SMB-3	2台
	ループ余熱除去系第2入口弁	16回定検	SMB-3	2台
	RCPサーマルバリア 冷却水出口第1隔離弁	16回定検	SMB-0	1台
	加圧器逃がし弁元弁	16回定検	SMB - 00	2台
	R C P 軸受冷却水出口第1隔離弁	16回定検	SMB-00	1台
	封水戻りラインC/V第1隔離弁	16回定検	SMB-00	1台
	Aループ高温側サンプル第1隔離弁	18回定検	SMB-000	1台
	R-11/12入口ライン 格納容器隔離弁	13回定検	SMB-000	1台

	<u> </u>	関西電力株式会社
No.	高浜2-絶縁低下-23	事象: 絶縁低下
質問	(別冊-6弁-2.1電動装置-23頁) 代表機器以外の設計基準事故時雰囲 ータについて、代表機器による評価で と。	気内で機能要求のある電動装置のモ 包絡されることの根拠を提示するこ
回答	「高浜1-絶縁低下-23」の回答と (資料中の"高浜1号炉"は"高浜2号炉	17.5 (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c

		関西電力株式会社	
No.	高浜2-絶縁低下-24	事象:絶縁低下	
質問	ンタ/2制御設備-24/18/28頁) メタルクラッド開閉装置、パワーセ 御盤の保護リレーの評価に関し、同種	メタルクラッド開閉装置、パワーセンタ及び非常用ディーゼル発電機制 盤の保護リレーの評価に関し、同種保護リレーのサンプリング調査結果 り評価を実施したとあるが、絶縁材料、絶縁種別の同等性についての説	
回答	「高浜1-絶縁低下-24」の回答と	同様です。	

93		関西電力株式会社
No.	高浜2-絶縁低下-25	事象: 絶縁低下
質問	(別冊-12計測制御設備-1プロセス計測制御設備-12,22,25,34頁) 設計基準事故時雰囲気内で機能要求がある1次冷却材圧力計測制御装置 伝送器、加圧器水位計測制御装置伝送器、1次冷却材高温側温度(広域)計測制御装置測温抵抗体及び格納容器内高レンジエリアモニタ放射線検出器については消耗品・定期取替品とされているが、以下についての説明を提示すること。 ・取替周期 ・取替周期 ・取替周期の期間内において事故時雰囲気で健全性が維持できることの根拠	
回答	「高浜1-絶縁低下-25」の回答	と同様です。

	1	関西電力株式会社
No.	高浜2-絶縁低下-26	事象: 絶縁低下
質問	(別冊-4容器-3.3電気ペネトレーショ 「美浜2号炉で21年間使用したケース 供試ケーブルと高浜2号炉のピッグティ リードの同等性についての説明を提示	ブルを供試ケーブルとし」とあるが、 イル型電気ペネトレーションの外部
回答	「高浜1-絶縁低下-26」の回答と	同様です。

関西電力		関西電力株式会社
No.	高浜2-絶縁低下-28	分類: 容器 (電気ペネトレーション)
質問	(4-3.3-2頁) 表1-1において、評価対象の電気ペス等対処設備」とされているが、各機器を説明すること。	ネトレーションは全て「常設重大事故 に対し重大事故等時に期待する機能
回答	「高浜1-絶縁低下-28」の回答と	同様です。

	T	関
No.	高浜2-絶縁低下-29	分類: 容器(電気ペネトレーション)
質問	(4-3.3-5頁) 以下についての説明を提示すること ①電気ペネトレーションの評価で考 ②表2.1-2に記載されている重大事前 線線量率)の根拠	
回答	「高浜1-絶縁低下-29」の回答と	同様です。

<u>p</u>	関西電力株式会社	
No.	高浜2-絶縁低下-30	分類:容器(電気ペネトレーション)
質問	(4-3.3-14頁) 表2.3-4の事故時雰囲気暴露の全ての 包絡していることの根拠を提示するこ	の試験条件が、実機の重大事故条件を
	「高浜1-絶縁低下-30」の回答と	一同様です。

	関西電力株式会社	
No.	高浜2-絶縁低下-31	分類:容器(電気ペネトレーション)
質問	(4-3.3-16頁) 三重同軸型電気ペネトレーションの 評価の内容及びその妥当性についての	重大事故等時を考慮した長期健全性説明を提示すること。
回答	「高浜1-絶縁低下-31」の回答と	同様です。

	ş	関西電力株式会社
No.	高浜2-絶縁低下-32	分類:ケーブル(ケーブル共通)
質問	(下記ケーブル等の健全性評価の記載以下のケーブル等について、事故等実機の重大事故条件を包絡しているこ①難燃KKケーブル②難燃円ケーブル③難燃三重同軸ケーブル④気密端子箱接続⑤直ジョイント⑥三重同軸コネクタ-1接続	時雰囲気暴露の全ての試験条件が、
回答	「高浜1-絶縁低下-32」の回答と	同様です。

<u> </u>	The state of the s	宣力株式会社
No.	高浜2-絶縁低下-33 分類:計測制御設備(プリー・制御設備)	コセス計測
質問	(12-1) 重大事故時雰囲気環境下において機能要求のある機器に関し、 いての説明を提示すること。 ①取替周期 ②取替周期の期間内において重大事故等時雰囲気で健全性が維 ことの根拠	2000 - 20-
回答	「高浜1-絶縁低下-33」の回答と同様です。	