- 2 特定原子力施設の構造及び設備,工事の計画
- 2.1 原子炉圧力容器·格納容器注水設備
- 2.1.1 基本設計
- 2.1.1.1 設置の目的

原子炉圧力容器・格納容器注水設備(以下,原子炉注水系という)は、建屋に滞留した 汚染水から油分,塩分,放射能を除去した水(以下,処理水という)及びろ過水を水源と し、電動機駆動の注水ポンプにて原子炉への注水を行い、燃料の崩壊熱を除去することを 目的とする。

2.1.1.2 要求される機能

- (1) 原子炉圧力容器・格納容器内での崩壊熱を適切に除去できること。
- (2) 原子炉圧力容器底部温度を概ね100℃未満に維持できる機能を有すること。
- (3) 原子炉注水系は多重性または多様性及び独立性をそなえること。
- (4) 異常時にも適切に対応できる機能を有すること。
- (5) 常設の原子炉注水系が冷却機能を喪失した際は代替冷却機能を有すること。

2.1.1.3 設計方針

- 2.1.1.3.1 新設設備の設計方針
- (1) 構造強度及び機能の維持
- a. 原子炉注水系は、燃料の崩壊熱を除去し冷温停止状態に必要な冷却水を注入できる機能を有し、原子炉圧力容器底部温度を概ね 100℃未満に維持できる設計とする。
- b. 原子炉注水系は、系統の多重性及び独立性を備えた設計とする。また、定期的に機 能確認が行える設計とする。
- c. 原子炉注水系は、異なる送電系統で2回線以上の外部電源から受電するとともに、外 部電源喪失の場合でも、所内の独立した電源設備から受電できる設計とする。
- d. 原子炉注水系は、材料の選定、製作及び検査について、適切と認められる規格および基準によるものとする。
- e. 原子炉注水系は、漏えいを防止できる設計とする。
- f. 原子炉注水系の設備に異常が生じた場合に検出できるようにする。
- (2) 注水状態の監視
- a. 原子炉注水系は、注水流量を監視し記録できる設計とする。

(3) 漏えい監視

- a. 原子炉注水系は、設備に漏えいがあった場合に検出できるようにする。
- b. 原子炉注水系は、漏えい箇所を隔離できるとともに注水を継続できる設計とする。

(4) 異常時への対応機能

- a. 原子炉注水系は、外部電源が利用できない場合にも冷却機能を継続できる設計とする。
- b. 原子炉注水系は、母線によって供給される全ての電源が喪失した場合においても、注 水冷却をすみやかに再開可能とする電源を備えたものとする。
- c. 原子炉注水系は、地震、津波等の発生を考慮しても冷却機能を確保できる設計とする。

(5) 火災防護

a. 早期検知に努めるとともに、消火設備を設けることで、初期消火を行い、火災により、 安全性を損なうことのないようにする。

2.1.1.3.2 既設設備の設計方針

(1) 耐震性

原子炉注水系の既設設備は、基準地震動 Ss による地震力に対してその安全機能を確保できることを確認する。確保できない場合は、多様性を考慮した設計とする。

(2) 系統流量

原子炉等を適切に冷却するのに必要な冷却水の流量を確保できることを確認する。

2.1.1.4 供用期間中に確認する項目

- (1) 崩壊熱相当注水量以上で原子炉へ注水できること。
- (2) 原子炉圧力容器底部温度が100℃未満であること。

2.1.1.5 主要な機器

(1) 設備概要 (添付資料-1参照)

原子炉注水系は、処理水及びろ過水を水源とし、電動機駆動の注水ポンプにて建屋内の 既設配管(1号機は給水系、炉心スプレイ系、2、3号機は給水系、炉心スプレイ系及び 消火系)を介して原子炉への注水を行い、燃料の崩壊熱を除去する。

水源には、ろ過水タンク、処理水バッファタンク、純水タンク、復水貯蔵タンク(以下、CSTという)を備え、ポンプは常用高台炉注水ポンプ、非常用高台炉注水ポンプ、純水タンク脇炉注水ポンプ、タービン建屋内炉注水ポンプ、CST炉注水ポンプにより構成する。また、原子炉への注水ラインは、処理水バッファタンクから常用高台炉注水ポンプまたは非常用高台炉注水ポンプを介する注水ライン、処理水バッファタンクからタービン建

屋内炉注水ポンプを介する注水ライン、純水タンクから純水タンク脇炉注水ポンプを介する注水ライン、各号機のCSTからCST炉注水ポンプまたはタービン建屋内炉注水ポンプを介するライン等で構成する。

系統の構成にあたっては、それぞれの設備で多重化を図り、機器の故障等による機能喪失を防止するよう構成する。

(2) 注水ポンプ

原子炉注水系の常用系は、事務本館海側駐車場に設置された常用高台炉注水ポンプ3台(1~3号共用)、タービン建屋内に設置されたタービン建屋内炉注水ポンプ6台及びCST炉注水ポンプ6台で構成する。

また予備としては電源喪失時の注水を確保するため、事務本館海側駐車場に設置され所内電源系統から独立した専用のディーゼル発電機(以下、D/Gという)から受電する非常用高台炉注水ポンプの3台(1~3号共用)、純水タンク脇に設置され所内電源及び専用のD/Gの双方からの受電が可能な純水タンク脇炉注水ポンプ3台(1~3号共用)の計6台で構成している。各ポンプの操作盤は各ポンプ近傍に設置されており、手動で起動・停止を行う。注水ポンプは、燃料の崩壊熱相当注水量を十分確保できる仕様とする(崩壊熱相当注水量の計算例を添付資料-3に示す)。

(3) タンク

原子炉注水系の水源は、建屋に滞留した汚染水を水処理した処理水とろ過水の2種類がある。処理水を水源としているタンクは、処理水バッファタンク及びCSTがあり、ろ過水を水源としているタンクはろ過水タンク、純水タンクがあり、水源に対し多様性を有している。

また、処理水バッファタンクは水源として処理水を主としているが、処理装置の不具合等により、処理水の供給がとぎれた場合に備え、ろ過水タンクから水の供給が可能である。なお、ろ過水タンクへのろ過水の供給量は、崩壊熱相当注水量に対して十分な供給能力がある。

これらタンクは1~3号機共用として運用するが、複数のタンクがあり、またタンクから原子炉までの注水ラインはそれぞれ独立しているため、十分な多様性及び独立性を有している。

(4) 原子炉注水ライン

常用,非常用高台炉注水ポンプ,タービン建屋内炉注水ポンプ,純水タンク脇炉注水ポンプ及びCST炉注水ポンプは,ポンプ吐出ラインをそれぞれ独立したラインで構成する他,常用,非常用高台炉注水ポンプは水源からポンプまでのラインも,処理水バッファタンクとろ過水タンクからの独立した系統構成とすることで,多様性を向上させ,系の漏え

い等に伴う系統を隔離しての補修作業や系統単独での作動確認が実施できる。

これらの系を構成するラインは、ポンプ定格流量にて注水した場合においても、有意な 圧力損失及び流体振動等が発生しないよう考慮する。また、耐圧ホース及びフレキシブル チューブの敷設にあたっては、許容された半径を満足する様に配置するとともに、ホース 類の敷設にあたっては、温度上昇による強度への影響を考慮し、道路脇の芝生上に敷設す るなど可能な限りアスファルトを避けて敷設する。

(5) 電源

常用高台炉注水ポンプ,タービン建屋内炉注水ポンプ及びCST炉注水ポンプの電源は, 異なる送電系統で2回線の外部電源から受電できる構成とする。

外部電源喪失の場合でも、所内共通ディーゼル発電機から電源を供給することで常用高 台炉注水ポンプ、タービン建屋内炉注水ポンプ及びCST炉注水ポンプのいずれかの運転 が可能な構成とする。

また、非常用高台炉注水ポンプ及び純水タンク脇炉注水ポンプはそれぞれ専用のD/Gを有し、外部電源の供給の有無に関わらず運転が可能な構成とする。

(6) その他

複数の設備に損傷が生じた場合であっても、原子炉注水を維持するため、原子炉注水専用の消防車を3台配備する。水源については、上記のタンクの他、原水地下タンクを利用できる他、これらの水源が使用できない場合も、海水を水源とした消防車による注水が可能である。

原子炉注水系の腐食防止対策としては、注水する処理水の水質管理を行うと共に、窒素 バブリングによる脱酸素等を実施する(添付資料-4参照)。

また,原子炉注水系の凍結防止対策としては,保温材の取り付け,水抜き,ハウス設置を実施する。

原子炉注水系の監視としては,現場,免震重要棟集中監視室等で原子炉の冷却状態及び 注水状態を監視し,これらの変動により有意な漏えい検出も可能と考えている。

また、タンク、または配管等からの微少漏えいによる系外への放射性物質漏えいに関しては特に監視設備は設けていないが、漏えいリスクが低いPE管への設備変更、土嚢による系外放出防止対策を実施すると共に、巡視点検を行うことにより監視している。

接触等による流量変動防止対策として、原子炉注水量調整弁近傍に注意喚起の表示、接触しやすい流量調整弁には接触防止カバーを取付ける。

2.1.1.6 自然災害対策等

(1) 津波

原子炉注水系は、機器の故障等による機能喪失を防止するよう構成しているが、津波等

により万が一,複数設備の機能が同時に喪失した場合は、水源の損傷状況や現場状況に応じて、新たな消防車の配備や注水ラインの再敷設等を行い、原子炉注水を再開する。

(2) 火災

原子炉注水系の非常用高台炉注水ポンプ及び純水タンク脇炉注水ポンプのD/G用燃料タンク内に危険物が存在するため、初期消火の対応ができるよう、近傍に消火器を設置する。

2.1.1.7 構造強度及び耐震性(添付資料-2参照)

(1) 構造強度

原子炉注水系は、技術基準上非常用炉心冷却設備に相当するクラス2機器と位置付けられる。この適用規格は、「JSME S NC-1 発電用原子力設備規格 設計・建設規格(以下、設計・建設規格という)」で規定されるものであるが、設計・建設規格は、鋼材を基本とした要求事項を規定したものであり、耐圧ホース等の非金属材についての基準がない。従って、鋼材を使用している設備については、設計・建設規格のクラス2機器相当での評価を行い、非金属材料については、当該設備に加わる機械的荷重により損傷に至らないことをもって評価をおこなう。この際、当該の設備が JIS や独自の製品規格等を有している場合や、試験等を実施した場合はその結果などを活用し、評価を行う。また、溶接部については、耐圧試験、系統機能試験等を行い、有意な変形や漏えい等のないことをもって評価を行なう。

また、構造強度に関連して経年劣化の影響を評価する観点から、原子力発電所での使用 実績がない材料の設備を使用する場合は、他産業での使用実績等を活用しつつ、必要に応 じて試験等をおこなうことで、経年劣化の影響についての評価を行う。なお、試験等の実 施が困難な場合にあっては、巡視点検等による状態監視をおこなうことで、健全性を確保 する。

(2) 耐震性

原子炉注水系は、耐震設計審査指針上のSクラス相当の設備と位置づけられるが、新設設備については、短期間での設計、調達及び設置を行う必要があることから、耐震Sクラスの要求事項を完全に満足するものとはなっていないものの、今後も継続的に発生すると思われる地震に対して耐震性を確保する観点から、耐震Bクラス設備に適用される静的地震力に対して耐震性が確保されることを確認する。

また、既設設備については、基準地震動 Ss による地震力に対してその安全機能を確保できることを確認する。確保できない場合は、多様性を考慮した設計とする。耐震性に関する評価にあたっては、「JEAG4601 原子力発電所耐震設計技術指針」に準拠することを基本とするが、必要に応じて試験結果等を用いた現実的な評価を行う。支持部材がない等の理由によって、耐震性に関する評価ができない設備を設置する場合においては、フレキシビリ

ティを有する材料を使用するなどし、可能な限り耐震性を確保する。

2.1.1.8 機器の故障への対応

2.1.1.8.1 機器の単一故障

(1) ポンプ故障

常用系ポンプが故障した場合は、待機号機の起動もしくは非常用高台炉注水ポンプ の起動を行うことで炉注水を再開する(注水再開の所要時間:30分程度)。

(2) 電源喪失

常用系ポンプの電源が、外部電源喪失や全母線電源喪失により喪失した場合は、電源切替には数時間を要することから、非常用高台炉注水ポンプによる原子炉注水(系統構成及び非常用高台炉注水ポンプの起動)及び予め待機している消防車による原子炉注水(系統構成及び消防車の起動)を並行して実施する(注水再開の所要時間:30分程度)。

(3) 水源喪失

常用系ポンプは,主としてバッファタンクを水源としているが,タンク等が損傷し,保有水が漏えいする等,タンク機能が喪失した場合は,水源をろ過水タンクに切替える(注水再開の所要時間:30分程度)。

なお、万が一バッファタンクに加え、ろ過水タンクの機能も喪失した場合(複数設備の機能喪失に該当)は、純水タンクへのろ過水の供給が無くなるため、原水地下タンクを水源とし、予め待機している消防車による注水を行う(注水再開の所要時間:60分程度)。

(4) 原子炉注水ラインの損傷

常用系ポンプからの注水ラインが損傷した場合は、純水タンク脇炉注水ポンプによる原子炉注水(系統構成及び純水タンク脇ポンプの起動)を行う(注水再開の所要時間:30分程度)。

2.1.1.8.2 原子炉注水系の複数の設備が同時に機能喪失した場合

原子炉注水系は、機器の故障等による機能喪失を防止するよう構成しているが、地震、津波等により万が一、複数の設備の機能が同時に喪失した場合は、水源の損傷状況や現場状況に応じて、新たな消防車の配備や注水ラインの再敷設等を行い、原子炉注水を再開する。消防車は、事務本館海側駐車場(OP. 35,000)、ろ過水タンク脇(OP. 40,800)、厚生棟横(OP. 23,000)にバックアップとして設置されている消防車を使用できる他、事務本館山側駐車場(OP. 36,900)に配備されている消防車を使用でき

る。注水再開までの時間は、現場状況等により変動するものの、ホース敷設距離等を 踏まえた作業時間を勘案すると、作業開始から3時間程度と想定しており、想定以上 とならないよう定期的に訓練を実施している。

現行の崩壊熱においては、仮に注水停止が3時間を超える長時間にわたる場合を想定しても、1プラント当たり10m³/hの注水流量で冷却可能であると評価されており、現行の設備で冷却を行うことが十分可能である。流量を高めた注水を再開する場合には、蒸気が急速に凝縮する可能性があることから、窒素封入が行われていることを確認するとともに、温度や圧力等のパラメータを監視しつつ注水流量の調整を行う。

2.1.1.8.3 異常時の評価

原子炉注水系が異常事象により機能喪失し、原子炉注水が停止した場合について、 評価を実施した(添付資料-5参照)。

敷地境界での年間の実効線量の評価結果は、過渡相当事象(注水停止 1 時間)で約 9.3×10^{-7} mSv、事故相当事象(注水停止 7 時間)で約 4.3×10^{-6} mSv であり、周辺の公衆に対し、著しい放射線被ばくのリスクを与えることはない。

想定を大きく超える,シビアアクシデント相当事象(注水停止 12 時間)における敷地境界での年間の実効線量は約 $2.1\times10^{-5}\,\mathrm{mSv}$ であり,3 プラント分の放射性物質の放出を考慮した場合では約 $6.3\times10^{-5}\,\mathrm{mSv}$ である。また,特定原子力施設から $5\,\mathrm{km}$, $10\,\mathrm{km}$ 地点での年間の実効線量は,3 プラント分の放射性物質の放出を考慮した場合でそれぞれ約 $1.1\times10^{-5}\,\mathrm{mSv}$,約 $3.6\times10^{-6}\,\mathrm{mSv}$ であり,周辺の公衆に対し,著しい放射線被ばくのリスクを与えることはない。

2.1.1.8.4 原子炉注水系の確率論的リスク評価

原子炉注水系に対して影響が大きい事象を選定し、その後の事象進展の確率を、設備構成や故障率を基に推定し、原子炉圧力容器内及び格納容器内の燃料(以下、炉心という)が再損傷に至る頻度を評価した(添付資料-6参照)。

評価の結果,炉心が再損傷する頻度(点推定値)の内的事象(ハザード発生箇所が発電所内)の合計値は,約 3.2×10^{-7} /年,外部電源喪失(地震)は,約 6.1×10^{-9} /年,大津波事象は,約 5.8×10^{-5} /年となっている。評価結果の合計値は約 5.9×10^{-5} /年であり,寄与割合は,大津波事象が約99%となった。

- 2.1.2 基本仕様
- 2.1.2.1 主要仕様
- (1) 常用高台炉注水ポンプ (完成品) (外部電源) (OP:35,000)

台 数 3

型 式 多段渦巻ポンプ

容 量 20m³/h (1台あたり)

揚 程 113m

(2) 非常用高台炉注水ポンプ (完成品) (専用D/G電源) (OP:35,000)

台 数 3

型 式 多段渦巻ポンプ

容 量 20m³/h (1台あたり)

揚 程 113m

(3) 純水タンク脇炉注水ポンプ (完成品) (外部電源及び専用D/G電源) (OP:10,000)

台 数 3

型 式 多段渦巻ポンプ

容 量 37 m³/h (1台あたり)

揚 程 93m

- (4) タービン建屋内炉注水ポンプ (完成品) (外部電源)
 - 1 号機 (OP:10,200)

台 数 2

型 式 多段渦巻ポンプ

容 量 12 m³/h (1台あたり)

揚 程 70m

2, 3号機 (OP:9,000)

台 数 2号機 2

3 号機 2

型 式 多段渦巻ポンプ

容 量 10m³/h (1台あたり)

揚 程 70m

(5) CST炉注水ポンプ (完成品) (外部電源)

台 数 1 号機 2 (OP:10, 200)

2号機 2 (OP:9,000)

3 号機 2 (OP:9,000)

型 式 単段渦巻ポンプ

容 量 20m³/h (1台あたり)

揚 程 70m

(6) 非常用高台炉注水ポンプ用 D/G (完成品) (OP:35,000)

台 数 1

容 量 125kVA 以上

力 率 約0.8 (遅れ)

電 圧 約 200V

周 波 数 50Hz

燃料タンク容量,消費量 約2501 (参考値),約26.1l/h (参考値)

(7) 純水タンク脇炉注水ポンプ用 D/G (完成品) (OP:23,000)

台 数]

容 量 125kVA 以上

力 率 約0.8 (遅れ)

電 圧 約 200V

周 波 数 50Hz

燃料タンク容量,消費量 約2501 (参考値),約26.1l/h (参考値)

(8) 処理水バッファタンク (完成品) (OP:35,000)

基 数 1

容 量 1000m³

(9) 復水貯蔵タンク (CST)

基 数 1号機 1 (OP:10,300)

2 号機 1 (OP:10,400)

3 号機 1 (OP:10,400)

容 量 1 号機 1893K1

2/3号機 2448.5K1

(10) ろ過水タンク (OP:40,800)

基数

容 量 8000 m³

(11) 純水タンク (OP:10,000)

基 数 2

容 量 2000 m³ (1基あたり)

(12)原水地下タンク (OP:40,800)

基 数 1

容 量 970m³

(13)消防車

基数 3

規格放水圧力0.7MPa 以上放水性能60m³/h 以上高圧放水圧力1.0MPa 以上

放水性能 36m³/h 以上

燃料タンク容量、消費量 約631 (参考値),約371/h (参考値)

表 2. 1-1 主要配管仕様

名称		仕様
【1~3号機高台炉注水ライン】	呼び径/厚さ	50A/Sch20S
ポンプユニット		65A/Sch20S
(鋼管)		80A/Sch20S
	材質	SUS304TP
	最高使用圧力	1.4MPa
	最高使用温度	50°C
(フレキシブルチューブ)	呼び径	75A 相当
	材質	SUS316 L
	最高使用圧力	1.4MPa
	最高使用温度	50°C
【1~3号機高台炉注水ライン】	呼び径/厚さ	50A/Sch40
注水ライン	1,0 11,7	80A/Sch40
(鋼管)		150A/Sch40
	材質	SUS304TP
	最高使用圧力	0.98MPa
	最高使用温度	50°C
 (鋼管)	呼び径/厚さ	80A/Sch40
	材質	STPT370
	最高使用圧力	0.98MPa
	最高使用温度	50°C
 (鋼管)	呼び径/厚さ	50A/Sch80
	材質	STPT370
	最高使用圧力	0.98MPa
	最高使用温度	0.96M1 a 50℃
 (鋼管)	呼び径/厚さ	300A/Sch40
	材質	STPT410
	最高使用圧力	0.98MPa
	最高使用温度	50°C
 (鋼管)	呼び径/厚さ	50A/Sch40
	竹び性/ 字で	65A/Sch40
		80A/Sch40
	 材質	STPG370
	最高使用圧力	0.98MPa
	最高使用温度	50°C
(鋼管)	呼び径/厚さ	50A/Sch80
	材質	STPG370
	最高使用圧力	0.98MPa
	最高使用温度	0. 90M a 50℃
	野ので用価度	50A 相当
	好低 材質	SUS316L
	祝貞	0.98MPa
	最高使用温度	0.90MFa 50℃
(ポリエチレン管)	野び径	75A 相当
(ハノー) レン目)	呼び怪 材質	プA 相目 ポリエチレン
	祝賀 最高使用圧力	ホリエテレン 1. 0MPa
	最高使用温度	40°C

名称		仕様
(消防ホース)	呼び径	65A 相当
(114)23.4. 7.1)	材質	ポリエステル
	最高使用圧力	1.0MPa 以上
【1~3号機純水タンク脇炉注水	呼び径/厚さ	50A/Sch20S
	呼い住/ 字さ	
ライン		65A/Sch20S
ポンプユニット	1155	80A/Sch40
(鋼管)	材質	SUS304TP
	最高使用圧力	1. 4MPa
	最高使用温度	50°C
【1~3号機純水タンク脇炉注水	呼び径/厚さ	150A/Sch20
 ライン】		200A/Sch20
注水ライン	材質	SGP
(鋼管)	最高使用圧力	0.98MPa
	最高使用温度	50°C
(耐圧ホース)	呼び径	75A 相当
	材質	ポリ塩化ビニル
	最高使用圧力	0.98MPa
	最高使用温度	50°C
	許容曲げ半径	750mm
(消防ホース)	呼び径	65A 相当
(1141)4	材質	ポリエステル
	最高使用圧力	1.0MPa 以上
【1~3号機タービン建屋内炉注	呼び径/厚さ	65A/Sch40
水ライン】	材質	STPT370
ポンプユニット	最高使用圧力	1.4MPa
(鋼管)	最高使用温度	50°C
(鋼管)	呼び径/厚さ	50A/Sch80
	材質	STPT370
	最高使用圧力	1.4MPa
	最高使用温度	1.4MI a 50°C
	野の怪/厚さ	50 C 50A/Sch80
	呼い怪/ 厚さ 材質	SUS304TP
	,	
	最高使用圧力	1.4MPa
	最高使用温度	50°C
【1~3号機タービン建屋内炉注	呼び径/厚さ	65A / Sch40
水ライン】		80A/Sch40
注水ライン		100A/Sch40
(鋼管)	1.1.55	150A/Sch40
	材質	STPT370
	最高使用圧力	0.98MPa
	最高使用温度	50°C
(鋼管)	呼び径/厚さ	50A/Sch160
	材質	STPT370
	最高使用圧力	0.98MPa
	最高使用温度	50°C

名称		
(鋼管)	呼び径/厚さ	80A/Sch40
		150A/Sch40
		300A/Sch40
	材質	STPG370
	最高使用圧力	0.98MPa
	最高使用温度	50°C
(鋼管)	呼び径/厚さ	50A/Sch80
	材質	STPG370
	最高使用圧力	0.98MPa
	最高使用温度	50°C
(鋼管)	呼び径/厚さ	50A/Sch80
		65A/Sch40
	材質	STPT410
	最高使用圧力	0.96MPa
	最高使用温度	66℃
(ポリエチレン管)	呼び径	75A 相当/150A 相当
	材質	ポリエチレン
	最高使用圧力	1.0MPa
	最高使用温度	40°C
【1~3号機CST原子炉注水ライ	呼び径/厚さ	25A/Sch80
$ \sim 1$		50A/Sch80
ポンプユニット	材質	STPT410
(鋼管)	最高使用圧力	0.96MPa
	最高使用温度	66°C
	呼び径/厚さ	80A/Sch40
	材質	STPT410
	最高使用圧力	0.96MPa
	最高使用温度	66°C
【1~3号機CST原子炉注水ライ	呼び径/厚さ	50A/Sch80
		50A/Sch40
注水ライン		65A/Sch40
(鋼管)		80A/Sch40
		100A/Sch40
		150A/Sch40
	材質	STPT410
	最高使用圧力	0.96MPa
	最高使用温度	66℃
(ポリエチレン管)	呼び径	50A 相当
		75A 相当
		100A 相当
		150A 相当
	材質	ポリエチレン
	最高使用圧力	1.0MPa
	最高使用温度	40°C

2.1.3 添付資料

添付資料-1 原子炉圧力容器・格納容器注水設備系統概略図

添付資料-2 構造強度及び耐震性について 添付資料-3 崩壊熱相当の注水量について

添付資料-4 炉注入する処理水の水質目標値について

添付資料-5 原子炉注水停止時評価の説明資料

添付資料-6 原子炉注水系に関する確率論的リスク評価

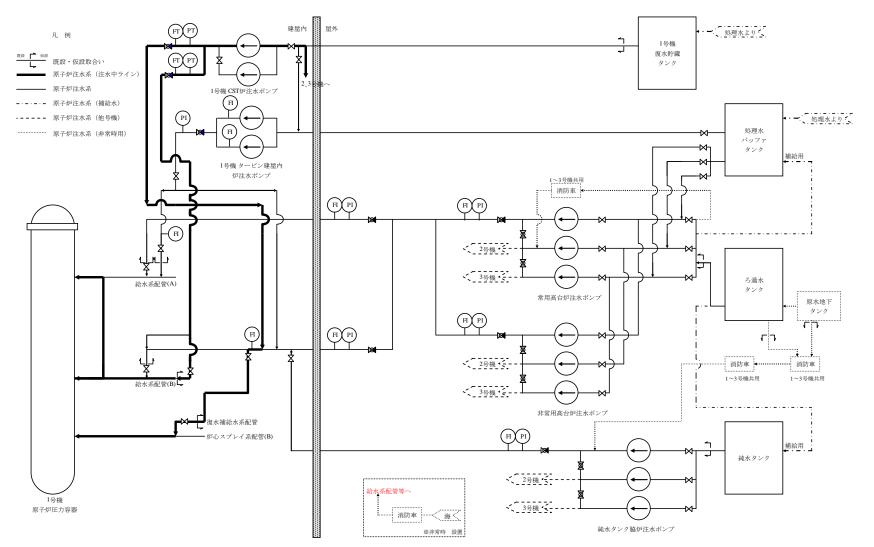


図-1 1号機原子炉圧力容器・格納容器注水設備系統概略図

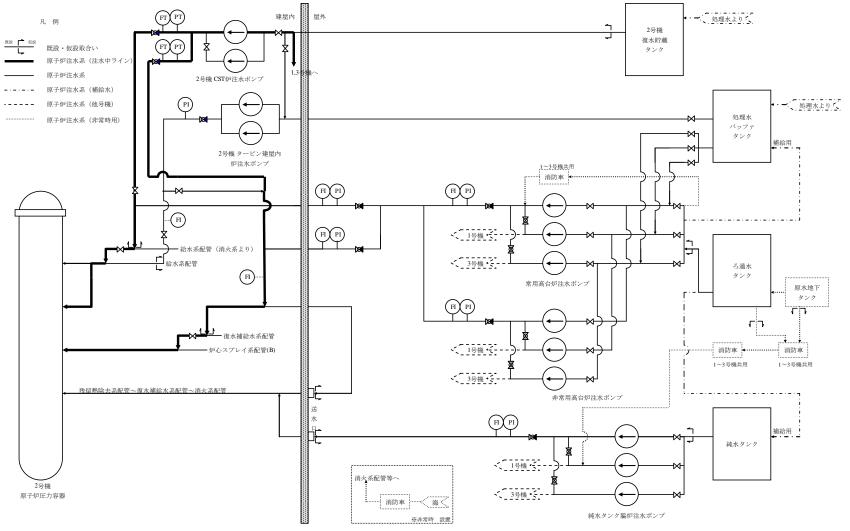


図-2 2号機原子炉圧力容器・格納容器注水設備系統概略図

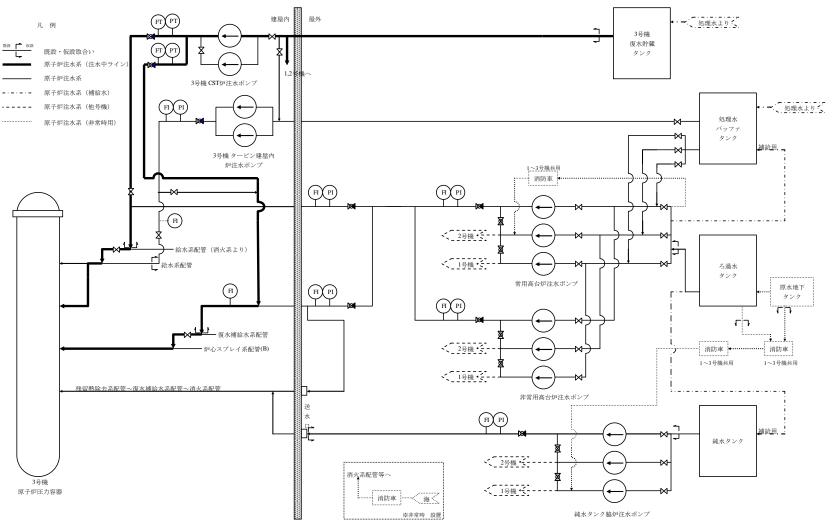


図-3 3号機原子炉圧力容器・格納容器注水設備系統概略図

構造強度及び耐震性について

1 新設設備の構造強度及び耐震性

1.1 ポンプ

1.1.1 常用高台炉注水ポンプ及び非常用高台炉注水ポンプ

1.1.1.1 構造強度

常用高台炉注水ポンプ及び非常用高台炉注水ポンプについては、ポンプの最高 使用圧力を上回る試験圧力で耐圧試験を実施し、漏えい等の異常がないことを確 認することから、ポンプの最高使用圧力に十分耐えうる構造強度を有していると 判断する。

1.1.1.2 耐震性

常用高台炉注水ポンプ及び非常用高台炉注水ポンプについては、ポンプユニットを、ダンパを有するトラックに搭載することにより耐震性を向上させるとともに、ボルト等で固定することで、転倒防止策を講じる。これを踏まえ、耐震性の評価として、ボルトの強度が確保されること、及びトラックが転倒しないことの評価を行った。なお、基準地震動Ssに対する動的解析を行うことが困難であることから、耐震設計審査指針上の耐震Bクラス設備に適用される静的地震力による評価を行った。

(1) ボルトの強度評価

原子力発電所耐震設計技術規程 (JEAC4601-2008) の横型ポンプの強度評価方法に準拠して評価を行った結果,耐震Bクラス設備に適用される静的地震力に対してボルトの強度が確保されることを確認した。なお,耐震Sクラス設備に適用される静的地震力に対しても,ボルトの強度が確保されることを確認した(表-1,図-1参照)。

		*****		2 4 11 11 11 11 11 11 11 11 11 11 11 11 1
	耐震Bクラス設備に適用さ れる静的地震力による評価			
	算出応力 [MPa]	許容応力 [MPa]	算出応力 [MPa]	許容応力 [MPa]
引張応力	作用しない	158	5	190
せん断応力	3	122	5	146

表-1 常用及び非常用高台炉注水ポンプのボルトの強度評価結果

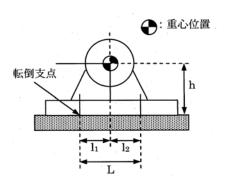


図-1 ボルトの強度評価モデル

L 支点としている基礎ボルトより最大引張応力が かかる基礎ボルトまでの距離

m 機器の運転時質量

g 重力加速度

h 据付面から重心までの距離

 M_P ポンプ回転により働くモーメント

※基礎ボルトに Mr は作用しない

1 重心と基礎ボルト間の水平方向距離

n_f 引張力の作用する基礎ボルトの評価本数

n 基礎ボルトの本数

A_b 基礎ボルトの軸断面積

C_H 水平方向設計震度

C_V 鉛直方向設計震度

C_P ポンプ振動による震度

ボルトに作用する引張力: $F_b = \frac{1}{L} \{ mg(C_H + C_p) h + M_P - mg(1 - C_V - C_p) 1_1 \}$

ボルトの引張応力: $\sigma_b = \frac{F_b}{n_f A_b}$

ボルトに作用するせん断力: $Q_b = mg(C_H + C_p)$

ボルトのせん断応力: $\tau b = \frac{Q_b}{nA_b}$

(2) トラックの転倒評価

ポンプユニット,及びそれを搭載しているトラックについて,地震によるモーメントと自重によるモーメントを算出し,それらを比較することで転倒評価を行った(図-2参照)。ポンプユニット及びトラックが転倒するのは,地震によるモーメント>自重によるモーメントとなる場合であるが,耐震Bクラス設備に適用される静的地震力による評価の結果,地震によるモーメントく自重によるモーメントとなることから,耐震Bクラス設備に適用される静的地震力に対してポンプユニット及びトラックが転倒しないことを確認した。なお,耐震Sクラス設備に適用される静的地震力に対してポトラックが転倒しないことを確認した。

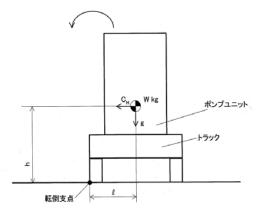


図-2 トラックの転倒評価モデル

C_H 水平方向設計震度

W 機器重量

g 重力加速度

h 据付面から重心までの距離

転倒支点から機器重心までの距離

地震によるモーメント: $M_1 = W \times g \times C_H \times h$ 自重によるモーメント: $M_2 = W \times g \times \ell$

1.1.2 純水タンク脇炉注水ポンプ

1.1.2.1 構造強度

純水タンク脇炉注水ポンプについては、ポンプの最高使用圧力を上回る試験圧力で耐圧試験を実施し、漏えい等の異常がないことを確認することから、ポンプの最高使用圧力に十分耐えうる構造強度を有していると判断する。

1.1.2.2 耐震性

純水タンク脇炉注水ポンプは、常用高台炉注水ポンプと同様の構造(ポンプユニットをトラックに搭載し、ボルト等で固定)であることから、耐震性についても同様に評価を行った。なお、基準地震動 Ss に対する動的解析を行うことが困難であることから、耐震設計審査指針上の耐震 Bクラス設備に適用される静的地震力による評価を行った。

(1) ボルトの強度評価

常用高台炉注水ポンプと同様の手法でボルトの評価を行った結果、耐震Bクラス設備に適用される静的地震力に対してボルトの強度が確保されることを確認した。なお、耐震Sクラス設備に適用される静的地震力に対しても、ボルトの強度が確保されることを確認した(表-2参照)。

	耐震Bクラス設備に適用さ れる静的地震力による評価				
	算出応力 許容応力 [MPa] [MPa]		算出応力 [MPa]	許容応力 [MPa]	
引張応力	作用しない	158	6	190	
せん断応力	3	122	5	146	

表-2 純水タンク脇炉注水ポンプのボルトの強度評価結果

(2) トラックの転倒評価

常用高台炉注水ポンプと同様に、耐震Bクラス設備に適用される静的地震力による評価を行った結果、地震によるモーメント<自重によるモーメントとなることから、耐震Bクラス設備に適用される静的地震力に対して純水タンク脇ポンプのポンプユニット及びトラックが転倒しないことを確認した。

1.1.3 タービン建屋内炉注水ポンプ

1.1.3.1 構造強度

タービン建屋内炉注水ポンプについては、通常運転圧力を上回る試験圧力で耐 圧試験を実施し、漏えい等の異常がないことを確認することから、ポンプの通常 運転時の内圧に十分耐えうる構造強度を有していると判断する。

1.1.3.2 耐震性

タービン建屋内炉注水ポンプは、基礎ボルトによりタービン建屋1階の床面に固定されていることを踏まえ、耐震性の評価として、ボルトの強度が確保されることの評価を行った。なお、基準地震動Ssに対する動的解析を行うことが困難であることから、耐震設計審査指針上の耐震Bクラス設備に適用される静的地震力による評価を行った。

(1) ボルトの強度評価

常用高台炉注水ポンプと同様の手法でボルトの評価を行った結果、ボルトの強度が確保されることを確認した。なお、耐震Sクラス設備に適用される静的地震力に対しても、ボルトの強度が確保されることを確認した(表-3参照)。

号機 応力分類		耐震Bクラス設備に適用される静的地震力による評価		耐震Sクラス設備に適用さ れる静的地震力による評価	
夕 /茂		算出応力 [MPa]	許容応力 [MPa]	算出応力 [MPa]	許容応力 [MPa]
1 F – 1	引張応力	作用しない	158	2	190
1 1 1	せん断応力	2	122	3	146
1 F - 2 / 3	引張応力	作用しない	180	3	207
11 2/3	せん断応力	3	139	4	159

表-3 タービン建屋内炉注水ポンプのボルトの強度評価結果

1.1.4 CST炉注水ポンプ

1.1.4.1 構造強度

CST炉注水ポンプについては、通常運転圧力を上回る試験圧力で耐圧試験を 実施し、漏えい等の異常がないことを確認することから、ポンプの通常運転時の 内圧に十分耐えうる構造強度を有していると判断する。

1.1.4.2 耐震性

CST炉注水ポンプは,基礎ボルトによりタービン建屋 1 階の床面に固定されていることを踏まえ,耐震性の評価として,ボルトの強度が確保されることの評

価を行う。なお、基準地震動 Ss に対する動的解析を行うことが困難であることから、耐震設計審査指針上の耐震 B クラス設備に適用される静的地震力による評価を行う。

(1) ボルトの強度評価

常用高台炉注水ポンプと同様の手法でボルトの評価を行い、ボルトの強度が確保されることを確認した。なお、耐震 S クラス設備に適用される静的地震力に対しても、ボルトの強度が確保されることを確認した(表-4参照)。

表-4 CST炉注水ポンプのボルトの強度評価結果

号機	大九八 粨		設備に適用さ 力による評価	耐震Sクラス れる静的地震	設備に適用さ 力による評価
万饭	応力分類	算出応力 [MPa]	許容応力 [MPa]	算出応力 [MPa]	許容応力 [MPa]
1 F —	引張応力	作用しない	180	2	207
1/2/3	せん断応力	3	139	4	159

1.2 タンクの構造強度及び耐震性

1.2.1 処理水バッファタンク

1.2.1.1 構造強度

バッファタンクについては、オーバーフロー水位 9,800mm に対して、8,000mm まで水張り後に漏えい確認を行い、有意な変形や漏えいがないことを確認する。実際の運用にあたっては、7,000mm 以下で水位管理をすることから、原子炉注水系における使用条件に対し、十分耐えうる構造強度を有していると評価している。

1.2.1.2 耐震性

処理水バッファタンクは,事務本館海側駐車場に設置されており,ボルトによる固定はされていないことを踏まえ,耐震性の評価として,タンクが転倒しないことの評価を行った。なお,基準地震動 Ss に対する動的解析を行うことが困難であることから,静的地震力を用いて,耐震設計審査指針上の耐震Bクラス相当の評価を行った。

(1) 処理水バッファタンクの転倒評価

タンクについて、地震によるモーメントと自重によるモーメントを算出し、それらを比較することで転倒評価を行った。タンクが転倒するのは、地震によるモーメント>自重によるモーメントの場合であるが、評価の結果、地震によるモーメント<自重によるモーメントであり、耐震Bクラス設備に適用される静的地震力に対してタンクが転倒しないことを確認した。

1.3 管の構造強度及び耐震性

1.3.1 鋼管

1.3.1.1 構造強度

鋼管については、「設計・建設規格」におけるクラス2配管の規定に基づき、最高使用圧力に対して十分な厚さを有していることを確認しており、原子炉注水系における使用条件に対し、十分な構造強度を有していると評価している(表-4 参照)。

表-4 原子炉注水系における鋼管の構造強度評価結果

	公称肉厚 [mm]	必要最小厚さ [mm]
【1~3号機高台炉注水ライン】	3. 5	0. 33
ポンプユニット	3. 5	0. 42
	4.0	0. 49
【1~3号機高台炉注水ライン】	3.9	0. 24
	5. 5	0.35
	7. 1	0.64
	5. 5	3.0
	5. 5	2.4
	10.3	3.8
	3. 9	2. 4
	5. 2	2.7
	5. 5	3.0
	5. 5	2.4
【1~3号機純水タンク脇炉注水ライン】 ポンプユニット	3. 5	0.33
, , , , , , , , , , , , , , , , , , ,	3. 5	0.42
	5. 5	0.49
【1~3号機純水タンク脇炉注水ライン】	5. 0	3.8
	5.8	3.8
【1~3号機タービン建屋内炉注水ライン】 ポンプユニット	5. 2	2.7
7.00	5. 5	2. 4
	5. 5	0. 33
【1~3号機タービン建屋内炉注水ライン】	5. 2	2.7
	5. 5	3.0
	6. 0	3.4
	7. 1	3.8
	8.7	2.4

	5. 5	3.0
	0.0	5.0
	7. 1	3.8
	10. 3	3.8
	5. 5	2.4
	5. 5	2. 4
	5. 2	2. 7
【1~3号機CST炉注水ライン】 ポンプユニット	4. 5	1.7
, , , , , , , , , , , , , , , , , , ,	5. 5	2.4
	5. 5	3.0
【1~3号機CST炉注水ライン】	5. 5	2. 4
	3. 9	2.4
	5. 2	2.7
	5. 5	3.0
	6. 0	3. 4
	7. 1	3.8

■ 内圧を受ける直管

最高使用圧力に対する直管の厚さは、(式 1-1) により計算した値及び表 - 5 に定める値のいずれか大きい方の値以上でなければならない。

t:管の計算上必要な厚さ (mm)

$$t = \frac{PD_0}{2S\eta + 0.8P} \tag{\ddagger 1-1}$$

P:最高使用圧力 (MPa)

D₀: 管の外径 (mm)

S: 最高使用温度における「設計・建設規格 付録材料図 表 Part5 表 5」に規定する材料の許容引張応力 (MPa)

η:長手継手の効率で、「設計・建設規格 PVC-3130」に定めるところによる。

表-5 炭素鋼鋼管の必要最小厚さ

管の外径 (mm)	管の厚さ (mm)
25 未満	1.4
25 以上 38 未満	1.7
38 以上 45 未満	1.9
45 以上 57 未満	2.2
57 以上 64 未満	2. 4
64 以上 82 未満	2.7
82 以上 101 未満	3. 0
101 以上 127 未満	3. 4
127 以上	3.8

1.3.1.2 耐震性

鋼管は分岐ヘッダ等の短い部分に使用するが、その前後はフレキシビリティを 有したポリエチレン配管等と接続されており地震変位による有意な応力は発生し ないと考える。

1.3.2 フレキシブルチューブ

1.3.2.1 構造強度

フレキシブルチューブは設計・建設規格に記載がない機器であるが,通常運転 状態における漏えい確認試験を行い,有意な変形や漏えいがないことを確認する ことから,必要な構造強度を有しているものと判断する。

1.3.2.2 耐震性

フレキシブルチューブは,フレキシビリティを有しており,地震変位による有意な応力は発生しないと考えられる。

1.3.3 ポリエチレン配管

1.3.3.1 構造強度

ポリエチレン管の材料である高密度ポリエチレンは非金属材であるため,「JSME S NC-1 発電用原子力設備規格 設計・建設規格」による規定はなく, ISO TR9080 及び ISO 12162 により「PE100」として規定,分類される。ポリエチレン管の性能(引張降伏強さや引張による破断時の伸び等)や寸法については,日本水道協会規格(JWWA K 144 等)及び配水用ポリエチレンパイプシステム協会規格(PTC K 03 等)に詳しく規定されている。

内圧に対する強度設計としては、設計内圧による発生応力が、材料 (PE100) の 50 0 年後クリープ強度 σ_{50} に安全率を見込んだ値を上回らないような外径と管厚

の組み合わせを、JWWA K 144 等で規定している(下式)。この強度設計式において、設計内圧は 1.0MPa であり、常用高台炉注水ポンプ等の通常運転圧力(現在までの実績ベースで 1.0MPa 以下)を上回っていることから、ポリエチレン管の規格品は、原子炉注水系での内圧条件に対して十分な管厚を有する(表-6にポリエチレン管の寸法の例を示す)。

また、ポリエチレン管の耐圧性は温度依存性があるが、50℃の温度条件においても、原子炉注水系の最高使用圧力を上回る耐圧性能が確保できることを数値シミュレーションにより確認している。具体的には、①ポリエチレン管に加わる内圧による応力、②使用環境温度、及び③破壊時間に関する関係式を用いて、環境温度が 20℃~50℃のときに、1MPa の内圧が加わった場合の破壊時間を算出したところ、破壊時間が最も短くなる 50℃の場合でも、10年以上の寿命が確保できることを確認した。

さらに,通常運転状態における漏えい確認を行い,有意な変形や漏えいがない ことを確認している。以上のことから,ポリエチレン管は原子炉注水系における 使用条件に対し,十分な構造強度を有していると判断する。

表-6 ポリエチレン管の寸法の例 (JWWA K 144)

外径:D	管厚: t
[mm]	[mm]
63. 0	5.8
90. 0	8. 2
125. 0	11. 4
180.0	16. 4
250. 0	22. 7
	[mm] 63. 0 90. 0 125. 0 180. 0

1.3.3.2 耐震性

ポリエチレン管の耐震設計については、土中に埋設された状態における耐震計算が日本水道協会規格等で規定されているのみであり、福島第一原子力発電所のように地上に設置したポリエチレン管の耐震計算に関する規定はない。しかしながら、ポリエチレン管は、フレキシビリティを有しており、地震変位による有意な応力は発生しないと考える。

1.3.4 耐圧ホース及び消防用ホース

1.3.4.1 構造強度

耐圧ホースは設計・建設規格に記載がない材料であるが、通常運転状態における漏えい確認試験を行い、有意な変形や漏えいがないことを確認していることから、必要な構造強度を有しているものと判断する。

消防用ホースも同様に設計・建設規格に記載がない材料であるが、消防法により規定される耐圧性能(1.6MPa)を満足していることから、原子炉注水系における使用条件(1.0MPa以下)に対し、十分な構造強度を有していると判断する。

2 既設設備の耐震性

2.1 配管

2.1.1 耐震性評価

原子炉注水系のラインとしては、表-7の既設配管を使用することから、これらの耐震性について評価を行った。評価にあたっては、原子力発電所耐震設計技術指針 (JEAG4601) に規定される許容応力状態 IV_AS に対する許容値を評価基準値として用いた。その結果、 $1\sim3$ 号機の炉心スプレイ系配管に接続される復水補給水系配管については、算出応力が評価基準値を上回るものの、1 号機、2 号機及び3 号機の給水系配管については、算出応力が評価基準値を満足することを確認した(表-8参照)。

また、既設配管の内、PCV 内等に敷設されている配管については、現時点で目視等による健全性確認は実施できていないが、現時点でも当該配管を用いた注水により、原子炉圧力容器等が冷却されていること等の状況から、原子炉冷却に必要な健全性は確保されているものと考えられる。

号機	原子炉注水配管
1 早級	給水系(A系,B系)
1 号機	復水補給水系~炉心スプレイ系(B系)
2 号機	給水系(B系)
2 芳機	復水補給水系~炉心スプレイ系 (B系)
3 号機	給水系(B系)
3 芳機	復水補給水系~炉心スプレイ系(B系)

表-7 原子炉注水系で使用する既設配管

表-8 基準地震動 Ss による地震力に対する既設配管の耐震性評価結果

号機	系統	耐震 クラス	1 次応力の 算出値 「MPa]	評価 基準値 「MPa]
1 号機	給水系(A系,B系)	В	204	369
2号機	給水系 (B系)	В	266	369
3号機	給水系 (B系)	В	229	432

2.1.2 配管支持構造物の点検結果(代表例を記載)

【1号機】

RE-FDW-16R

図-3 1号機の配管支持構造物の点検結果

【2号機】 FDWR5-2

図-4 2号機の配管支持構造物の点検結果

【3号機】 FDWR6-1, FDWR7-1

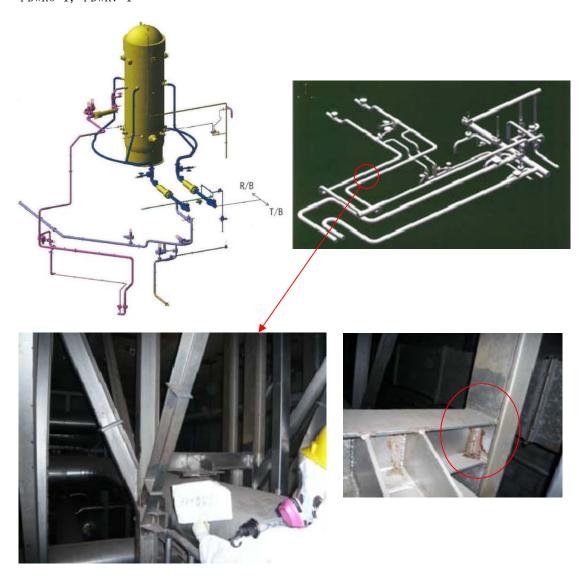


図-5 3号機の配管支持構造物の点検結果

2.2 ろ過水タンク、純水タンク、原水地下タンク

ろ過水タンク,純水タンク,原水地下タンクは,本震で基準地震動 Ss 相当の地震力が加わったことで,純水タンク1基に漏えいが確認されたが,ろ過水タンク2基,純水タンク1基,原水地下タンクについては,機能は維持されていた。また,全てのタンクが機能喪失に至った場合でも注水ができるように,海水を水源とした消防車による注水を行えるようにする。

2.3 復水貯蔵タンク (CST)

CSTは、1号機は耐震Bクラス(工事計画認可 昭和44年4月9日付け 43公第13820号)にて、2/3号機は耐震Aクラス(2号機:工事計画認可 昭和46年2月10日付け 45公第11897号 3号機:工事計画認可 昭和46年12月22日付け 46公第16351号,工事計画軽微変更届出 昭和48年10月23日付け 総官発871号)にて設計・製作されている。本震で基準地震動Ss相当の地震力が加わるとともに、スロッシングによる応力も加わったと想定されるが、CSTについては、有意な変形等もなく、機能は維持されていた。また、全てのタンクが機能喪失に至った場合でも注水ができるように、海水を水源とした消防車による注水を行えるようにする。

崩壊熱相当の注水量について

崩壊熱相当の注水量 $W[m^3/h]$ は下式で計算されるものであり、 $T_{in}[\mathbb{C}]$ から $T_{out}[\mathbb{C}]$ までの顕熱で崩壊熱を冷却可能な注水量である。

 $W=Q\times \rho \times 1,000\times 3,600/(hw_{out}-hw_{in})$

Q :崩壊熱「kW]

T_{in} : 注水温度[℃]

T_{out} :崩壊熱を除熱後の注水温度[℃]

 hw_{out} :水 $(T_{out}^{\circ}C)$ の比エンタルピー[J/kg]

 hw_{in} :水 $(T_{in}^{\circ}C)$ の比エンタルピー[J/kg]

ρ : 水の比容積[m³/kg]

なお、平成 24 年 12 月 7 日時点で、 T_{in} を 20 $^{\circ}$ C、 T_{out} を 80 $^{\circ}$ Cとした場合の、各号機の崩壊熱と崩壊熱相当の注水量の計算例を以下にしめす。

号機	崩壊熱	崩壊熱相当の注水量 W
1 号機	0.25 MW	$3.6 \text{ m}^3/\text{h}$
2 号機	0.33 MW	$4.8 \text{ m}^3/\text{h}$
3号機	0.33 MW	$4.8 \text{m}^3/\text{h}$

以上

炉注入する処理水の水質目標値について

- 1. 原子炉注水ラインや原子炉圧力容器 (RPV) 及び原子炉格納容器 (PCV) の一部 には塩化物イオンによる腐食への影響が認められている SUS304 材を使用していることから、念のため塩化物イオン濃度の目標値を 100ppm 以下とする。
- 2. 原子炉注水の水源である処理水バッファタンク水及び3号機復水貯蔵タンク水の塩化物イオン濃度を1回/3ヶ月の頻度で確認する。なお、確認は導電率測定によるものとし、塩化物イオン濃度100ppmに相当する導電率40mS/m^{1),2)}を超える場合は、塩化物イオン濃度の測定を行う。

<100ppm の根拠>

塩化物イオンによるステンレス鋼の局部腐食発生限界を考慮。SUS304 と SUS316 が使用されているが塩化物イオンの腐食への影響がより大きい SUS304 の腐食抑制を検討。

①原子炉注水ライン

- ▶ 図-1中の曲線の下の領域が腐食の発生しない環境である。
- ▶ 原子炉注水ラインの温度は処理水バッファタンクまたは復水貯蔵タンクが水源であるから、大気温度を大きく超える可能性はなく、猛暑期を想定しても40℃以下と考えられる。
- ightharpoonup 40°Cにおける局部腐食臨界電位に相当する塩化物イオン濃度を評価すると、図-1 より 160ppm となる。

図-1 大気開放条件での 304 ステンレス鋼の腐食マップ 3),4)

- ② 原子炉圧力容器 (RPV) 内及び原子炉格納容器 (PCV) 内
 - ▶ RPV及びPCV内の温度は80℃程度と評価されているが、窒素ガスの封入が行われていることから水中の溶存酸素濃度は低減しているものと考えられる。
 - ▶ 現在,溶存酸素濃度は測定できないものの,注入されている N2 濃度は 99.99%以上であるので,酸素濃度を 0.01%と仮定すると分圧から水中の溶存酸素濃度は 1ppb 程度で平衡するものと推定される。保守的に 100ppb (0.1ppm) と仮定すると,腐食電位は 100mV(SHE)以下と推定される。⁵⁾
 - ightharpoonup 図-2によれば、80°C、100mV(SHE)における局部腐食臨界電位に相当する塩化物イオン濃度は 135ppm と評価される。

③水質目標値の設定

以上より水質管理目標値を保守的に 100ppm とする。なお、今後RPVやPCV内の腐食環境に関する新たな情報が得られた時点で、根拠及び目標値を再評価してゆく。

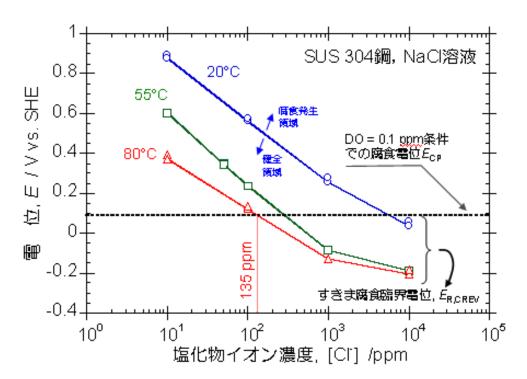


図-2 SUS 304 鋼のすきま腐食臨界電位 ER, CREV と定常腐食電位 ESP との比較による対すきま腐食可使用条件評価 $^{3),6)}$

.

¹⁾日本化学会編: "化学便覧 基礎編 改訂 5 版," 丸善, p. II-563 (2004).

²⁾日本学術振興会編: "金属防食技術便覧," 日刊工業新聞社, p. 177 (1972).

³⁾M. Akashi, G. Nakayama, T. Fukuda: CORROSION/98 Conf., NACE International, Paper No. 158 (1998).

⁴⁾ T. Fukuda, M. Akashi: Proc. Nuclear Waste Packaging -FOCUS'91, ANS, p. 201 (1991)

⁵⁾ R. W. Staehle et al.: EPRI RP311-1, Final Summary Report (1977).

⁶⁾ T. Fukuda, M. Akashi: Proc. Nuclear Waste Packaging –FOCUS'91, ANS, p. 201 (1991)

原子炉注水停止時評価の説明資料

1. 評価方法

評価は、大きく分けて三段階で実施する。第一段階では時間依存のエネルギーバランス 評価によって原子炉注水停止後及び注水再開時の燃料や炉内構造材の温度変化を評価し、 第二段階では温度評価結果を入力として核分裂生成物の放出量を評価し、第三段階では放 出される環境中への線量影響評価を実施する。

評価プラントについては、 $1 \sim 3$ 号機のうち崩壊熱の評価結果が最大である 2 号機を代表として対象とする(平成 24 年 12 月 7 日時点の崩壊熱:1 号機 0.25 MW, 2 号機 0.33 MW, 3 号機 0.33 MW)。

1.1 燃料温度評価

- (1) 炉心燃料からの崩壊熱による発熱と、炉心燃料、上部構造材、シュラウド、原子炉圧力容器側部、原子炉圧力容器底部のそれぞれの間の輻射熱伝達を考慮する(図-1)。
- (2) 各部の温度は一点近似とする。
- (3) 原子炉注水停止時の原子炉圧力容器内の保有水量は保守的に 0 m³とし,原子炉注水停止と同時に全燃料が露出するものとする。
- (4) 評価に用いる式を以下に示す(注水再開前)。
- a. 炉心燃料のエネルギーバランスの式

$$M_1 C p_1 \frac{dT_1}{dt} = Q_d - Q_1 - Q_5$$

 M_1 : 炉心燃料質量[kg]

*Cp*₁ : 炉心燃料比熱[kJ/(kg-K)]

 T_1 : 炉心燃料温度[K]

 Q_d : 炉心燃料崩壊熱[kW]

 $Q_{
m l}$: 炉心燃料(上面)における輻射伝熱量[kW]

 Q_5 : 炉心燃料(下面)における輻射伝熱量[kW]

b. 上部構造材のエネルギーバランスの式

$$M_2Cp_2\frac{dT_2}{dt} = Q_2$$

 M_{2} : 上部構造材質量[kg]

Cp, : 上部構造材比熱[kJ/(kg-K)]

 T_2 : 上部構造材温度[K]

 Q_2 : 上部構造材における輻射伝熱量[kW]

c. シュラウドのエネルギーバランスの式

$$M_3 C p_3 \frac{dT_3}{dt} = Q_3 - Q_4$$

 M_3 : シュラウド質量[kg]

*Cp*₃ : シュラウド比熱[kJ/(kg-K)]

 T_3 : シュラウド温度[K]

 $oldsymbol{Q}_3$: シュラウド(内面)における輻射伝熱量[kW]

 Q_4 : シュラウド (外面) における輻射伝熱量[kW]

d. 原子炉圧力容器側部のエネルギーバランスの式

$$M_4 C p_4 \frac{dT_4}{dt} = Q_4$$

 M_4 :原子炉圧力容器側部質量[kg]

 Cp_4 : 原子炉圧力容器側部比熱[kJ/(kg-K)]

 T_4 : 原子炉圧力容器側部温度[K]

e. 原子炉圧力容器底部のエネルギーバランスの式

$$M_5 C p_5 \frac{dT_5}{dt} = Q_5$$

 M_5 : 原子炉圧力容器底部質量[kg]

 Cp_5 : 原子炉圧力容器底部比熱[k,J/(kg-K)]

 T_{ϵ} : 原子炉圧力容器底部温度[K]

- (5) 注水再開後には注水による燃料冷却を考慮する。注水量の全てが炉心燃料の冷却に寄与するものとし、また、発生蒸気によって上部構造材が冷却されるものとする。飽和温度以下の水により燃料が冷却される場合には、水の顕熱により燃料の崩壊熱が除去されるものとする。
- (6) 評価に用いる式を以下に示す(注水再開後)。
- a. 炉心燃料のエネルギーバランスの式

$$M_1 C p_1 \frac{dT_1}{dt} = Q_d - Q_1 - Q_5 - Q_c$$

$$\subset \subset \mathcal{C}, \quad Q_c = W_g (H_g - H_f) + W_{in} (H_f - H_{in})$$

Q: 注水による炉心燃料除熱量[kW]

W... : 注水流量[kg/s]

W_e : 発生蒸気量[kg/s]

 H_{in} : 注水の比エンタルピ [kJ/kg]

 H_g : 飽和蒸気の比エンタルピ[kJ/kg]

 H_f : 飽和水の比エンタルピ[kJ/kg]

b. 上部構造材のエネルギーバランスの式

$$M_{2}Cp_{2}\frac{dT_{2}}{dt} = -Q_{2} - Q_{2g}$$

$$\sum Z C, \quad Q_{2g} = h_{2g} A_{2g} (T_2 - T_g)$$

 Q_{2g} : 上部構造材から蒸気流への対流伝熱量[kW]

 T_o : 飽和蒸気温度[K]

h_{2e} : 上部構造材の熱伝達率[kW/(m²-K)]

 A_{2g} : 上部構造材伝熱面積(蒸気への対流伝熱) $[m^2]$

1.2 核分裂生成物の放出量評価

(1) 上部構造材に付着しているセシウムが温度上昇に伴い飽和蒸気圧で蒸発し、環境中へ 放出された場合の線量影響を評価する。セシウムの放出量は、上部構造材温度の時間 変化にしたがって放出量を積分して評価する。

上部構造材としては、スタンドパイプと気水分離器を考慮しており、燃料からの輻射 熱の影響を考慮し、燃料に近いこれらの部位に炉心燃料インベントリ全量のセシウム が付着しているという保守的な設定としている。

- (2) 希ガスは既にほぼ完全に放出されていること、また、ヨウ素は減衰していることから、これらの被ばく評価上の影響は無視できるため、本評価では考慮しないこととする。
- (3) 燃料残存の核分裂生成物 (FP) については、平成 23 年 3 月の事故時に燃料温度は約 3,000℃近くの高温に達していると評価されており、揮発性の高いものは既に放出されているものと考えられる。よって、今回の評価結果の範囲である 500℃程度の燃料温度では、FP の有意な追加放出がないと考えられることから、これらについては本評価では考慮しないこととする。
- (4) 対象とするセシウムの化学形態は水酸化セシウム (CsOH) とし、その飽和蒸気圧は熱力学データベース (MALT) による評価結果を引用するものとする (図-2)。
- (5) CsOH のキャリアガスは、発生する蒸気量とする。また、炉心燃料が冷却するまで放出 が継続するものとする。
- (6) 評価に用いる式を以下に示す。

$$\begin{aligned} M_{CsOH} &= P_{CsOH} V_g / (RT) \\ C_{CsOH} &= M_{CsOH} / (V_g + v_{grav} A_{grav} + v_{dif} A_{dif}) \end{aligned}$$

$$M_{leak} = C_{CsOH}V_{g}$$

M_{CsOH} : CsOH 発生量[mol/s]

 P_{CsOH} : CsOH 飽和蒸気圧 $[N/m^2]$

 V_{g} : 発生蒸気流量[$\mathrm{m}^{3}/\mathrm{s}$]

R : 気体定数[J/(mol-K)]

T:上部構造材温度[K]

 C_{CsOH} : CsOH 平衡濃度[mol/m³]

v_{grav} : 重力沈降速度[m/s]

 A_{grav} : 重力沈降面積[m^2]

 v_{dif} : ブラウン拡散沈着速度[m/s]

A_{dif} : ブラウン拡散沈着面積[m²]

M_{leak} : CsOH 放出量[mol/s]:

(7) 上記の原子炉格納容器での重力沈降とブラウン拡散沈着は考慮するが、その他の原子 炉格納容器内や原子炉建屋での除染係数については、保守的に考慮しないこととする。

1.3 線量影響評価

- (1) 大気中へ放出されるセシウムは、原子炉建屋から地上放散されるものとし、周辺の公 衆に対する、放射線被ばくのリスクを年間の実効線量を用いて評価する。
- (2) 評価対象核種はセシウム 134 とセシウム 137 とする。
- (3) 実効線量は、以下に述べる内部被ばくによる実効線量及び外部被ばくによる実効線量 の和として計算する。被ばく経路としては、放射性雲中のセシウムからの外部被ばく と内部被ばくと、地表沈着したセシウムによる外部被ばくと内部被ばくを考慮する。
- (4) 放射性雲のセシウムからの γ 線の外部被ばくによる実効線量の評価に用いる式を以下 に示す。

$$H_{\gamma} = K \cdot E_{\gamma} / 0.5 \cdot D / Q \cdot Q_{Cs} \cdot 1000$$

 H_{ν} : 放射性雲のセシウムからの γ 線の外部被ばくによる実効線量[mSv]

K:空気カーマから実効線量への換算係数[Sv/Gy]

 E_{ν} : γ線の実効エネルギー[MeV]

D/Q:相対線量[Gy/Bq]

 Q_{Cs} :事故期間中のセシウムの大気放出量[Bq]

(5) 放射性雲のセシウムからの吸入摂取による内部被ばくの実効線量の評価に用いる式を 以下に示す。

$$H_{cs} = K_{in} \cdot R_1 \cdot \chi / Q \cdot Q_{cs}$$

 H_{C_c} :放射性雲のセシウムからの吸入摂取による内部被ばくの実効線量[mSv]

 K_m : 内部被ばく線量換算係数[mSv/Bq]

 R_1 : 呼吸率 $[m^3/s]$ χ/Q : 相対濃度 $[s/m^3]$

(6) 地表沈着したセシウムからの外部被ばくによる実効線量の評価に用いる式を以下に示す。1年間居住し続ける場合を考慮し、1年間の線量を評価する。セシウムの崩壊については保守的に考慮しない。

$$G_{ex} = K_{ex} \cdot \chi / Q \cdot V \cdot f \cdot Q_{Cs} \cdot T \cdot 1000$$

 G_{ev} : 地表沈着したセシウムからの外部被ばくによる実効線量[mSv]

K_{ev}: 外部被ばく線量換算係数[(Sv/s)/(Bq/m²)]

V : 沈降速度[m/s]f : 残存割合[-]T : 被ばく時間[s]

(7) 地表沈着したセシウムから再浮遊したセシウムの吸入摂取による内部被ばくの実効線量の評価に用いる式を以下に示す。1年間居住し続ける場合を考慮し、1年間の線量を評価する。セシウムの崩壊については保守的に考慮しない。

$$G_{in} = R_2 \cdot K_{in} \cdot \chi / Q \cdot V \cdot f \cdot F \cdot Q_{Cs} \cdot T$$

 G_{in} : 地表沈着したセシウムから再浮遊したセシウムの吸入摂取による内部

被ばくの実効線量[mSv]

 R_2 : 呼吸率 $[m^3/s]$ F : 再浮遊率 $[m^{-1}]$

(8) 相対濃度と相対線量については、本事象では核分裂生成物は主排気筒より放出されないことから、地上放散を想定し、下表の値を用いる。

	敷地境界	5km 地点	10km 地点
相対濃度[s/m³]	2.6×10^{-5}	4. 3×10^{-6}	1.5×10^{-6}
相対線量[Gy/Bq]	3.0×10^{-19}	8.9×10^{-20}	3.8×10^{-20}

2. 評価条件

2.1 燃料位置

燃料の位置については、不確定性はあるものの、 $1 \sim 3$ 号機のいずれについても原子炉 圧力容器もしくは原子炉格納容器内に燃料は存在しているものと推定されており、本評価 では、実効線量の評価を厳しくする観点から、原子炉圧力容器内に燃料の全量があるという条件で評価している。

平成23年3月の事故時の炉心損傷過程で放出されたセシウムの大部分は原子炉圧力容器内の上部構造材に付着していると考えられるため、本評価では、上部構造材に付着したセシウムの再蒸発による環境放出を前提とする。原子炉格納容器に燃料が落下している場合と比較して、原子炉圧力容器内に燃料を想定する場合の方が上部構造材の温度上昇を大きく見積もるため、保守的な結果を与えることとなる。

2.2 初期温度

現状の原子炉圧力容器や原子炉格納容器の各部位の温度推移から、原子炉圧力容器内及び原子炉格納容器内は十分に冷却されており(平成 24 年 12 月 7 日時点で概ね 50℃以下)、露出した過熱部分が有意な割合で存在している状況ではないと推定される。よって、初期燃料温度については、100℃と設定することが妥当と考えられるが、燃料位置等の不確かさを考慮して、保守的に 150℃と設定する。原子炉圧力容器上部等の構造材については、初期温度を 100℃と設定する。

2.3 燃料の崩壊熱

燃料の崩壊熱については、平成 24 年 12 月 7 日時点の 2 号機の崩壊熱 (0.33MW) を用いる。

2.4 注水停止時間

注水停止してから注水再開までの注水停止時間は以下の条件とする。

(1) 過渡相当

過渡相当事象としては、機器等の単一の故障を想定する。想定される原子炉注水系の単一の故障(ポンプ故障,電源喪失,水源喪失,原子炉注水ライン損傷)が発生した場合の注水再開までの所要時間は、以下に示すようにいずれも30分程度であるので、これに余裕をとり原子炉注水の停止時間は1時間とする。

a. ポンプ故障

常用系ポンプが故障した場合は,待機号機の起動もしくは非常用高台炉注水ポンプの起動を行うことで,原子炉注水を再開する(注水再開の所要時間:30分程度)。

b. 電源喪失

常用系ポンプの電源が、外部電源喪失や全母線電源喪失により喪失した場合は、電源切替に数時間を要することから、非常用高台炉注水ポンプによる原子炉注水(系統構成及び非常用高台炉注水ポンプの起動)及び予め待機している消防車による原子炉注水(系統構成及び消防車の起動)を並行して実施する(注水再開の所要時間:30分程度)。

c. 水源喪失

常用系ポンプは,主としてバッファタンクを水源としているが,タンク等が損傷し,保有水が漏えいする等,タンク機能が喪失した場合は,水源をろ過水タンクに切替える(注水再開の所要時間:30分程度)。

d. 原子炉注水ライン損傷

常用系ポンプからの注水ラインが損傷した場合は,純水タンク脇炉注水ポンプによる原子炉注水(系統構成及び純水タンク脇炉注水ポンプの起動)を行う(注水再開の所要時間:30分程度)。

(2) 事故相当

原子炉注水の流量低下や注水ポンプの電源喪失を検知した際は、免震重要棟内で警報を発して異常時の対応を促す仕組みとしているが、事故相当事象としては、これらの警報では検知できない原子炉注水系の異常が生じた場合を想定する。この場合には、原子炉圧力容器周辺や原子炉格納容器周辺の温度計の指示上昇によって異常の兆候を検知することとなるが、仮に、このような事態が生じた場合には、各部位の温度計が全体的に顕著な上昇傾向を示すと考えられるため、異常の検知は可能であると考えられる。

温度上昇の幅としては、本評価では保守的に 30℃と設定する。また、対象とする温度については、異常時には全体的に顕著な温度上昇傾向が想定されるため、上述の評価方法によって求めた原子炉圧力容器底部の温度を代表として検知対象とする。原子炉圧力容器底部の温度変化を図ー3に示すが、原子炉圧力容器底部の温度上昇幅が30℃を超過するのは注水停止からの経過時間が約6時間の時点である。これに注水再開に要する時間(注水再開の所要時間:30分程度)を考慮し、事故相当での原子炉注水の停止時間は7時間とする。

事故相当事象としては、原子炉注水系の複数の設備が同時に機能喪失した事象も想定される。このような事象が発生した場合には、水源の損傷状況や現場状況に応じて、新たな消防車の配備や注水ラインの再敷設等を行い、原子炉注水を再開する。注水再開までの時間は、現場状況等により変動するものの、ホース敷設距離等を踏まえた作業時間を勘案すると、作業開始から3時間程度と想定しており、上述の炉注水関係の警報では検知できない異常事象に包絡される。

(3) シビアアクシデント相当

施設の安全性を評価する観点では、異常時の評価としては過渡相当事象と事故相当事象の評価をすることで十分と考えられるが、ここではより長期にわたる原子炉注水停止の影響評価を行うため、想定を大きく超えるシビアアクシデント相当事象についても評価を実施することとする。

シビアアクシデント相当としては,何らかの原因によって原子炉注水が長時間停止 し,注水停止時間が事故相当事象を超える事象を想定する。

東北地方太平洋沖地震時の最長の原子炉注水停止時間は、1号機の実績で約14時間であり、この時間が1つの目安として考えられる。下表に1号機の当時の時系列を示しているが、全交流電源喪失から消防車による淡水注入開始までの約14時間を注水停止時間としている(非常用復水器の動作については不明な点があるものの、全交流電源喪失以降について機能が喪失しているものとしている)。

1号機 事象発生時の主要経緯(時系列)

(「福島第一原子力発電所 東北地方太平洋沖地震に伴う原子炉施設への影響について (平成 23 年 9 月 東京電力株式会社)」からの抜粋)

日時	主要経緯
平成 23 年 3 月 11 日	
14:46	東北地方太平洋沖地震発生,原子炉スクラム。
15:37	全交流電源喪失。
17:12	発電所長(発電所緊急時対策本部長)は、アクシデントマネジメ
	ント策として設置した消火系(FP)ライン,及び消防車を使用し
	た原子炉への注水方法の検討開始を指示。
17:30	ディーゼル駆動消火ポンプ (DD-FP) 起動 (待機状態)。
平成 23 年 3 月 12 日	
1:48	不具合による DD-FP 停止を確認。消防車から FP ラインへの送水
	口につなぎこむことを検討開始。
5:46	原子炉内に FP ラインから消防車による淡水注入開始。

表に示すように、消防車から FP ラインへの送水口につなぎこむことの検討開始は、ディーゼル駆動消火ポンプ (DD-FP) の停止を確認した後に実施しており、原子炉注水途絶直後から消防車による注水のみに専念することを想定する場合には、DD-FP の起動から停止までの時間 (約7時間)を短縮することが可能であると考えられる。また、当時と比較して、消防車の配備や手順書の整備がなされており、定期的な訓練も実施されていることから、消防車による原子炉注水についても事故当時と比較すると短期間で実施することが可能と考えられる。

これらを踏まえて、本評価では実績の約 14 時間を短縮した 12 時間をシビアアクシデント相当事象の注水停止時間として設定する。

2.5 注水再開時の注水流量と注水温度

注水再開時の注水流量は,事故相当事象とシビアアクシデント相当事象では $10 \text{ m}^3/\text{h}$ と設定する。これは,平成 24 年 12 月 7 日時点の崩壊熱相当注水量(II.2.1 添付資料-3)の約 2 倍の流量である。また,過渡相当事象では崩壊熱相当注水量と同程度の $5 \text{ m}^3/\text{h}$ を注水再開時の注水流量として設定する。また,注水温度は 30 \mathbb{C} とする。

3. 評価結果

3.1 過渡相当

炉心燃料温度と上部構造材温度の時間変化を図-4に示す。原子炉注水停止から炉心燃料温度は上昇し,注水停止から1時間の注水再開の時点で約170℃まで上昇するが, 注水再開により速やかに冷却され,事象は収束する。また,事象期間を通じて上部構造材温度はほとんど上昇しない。

本事象時に放出されるセシウム量及び敷地境界での実効線量について評価した結果は下表のとおりとなる。

セシウム 134 放出量	約 5.0×10 ⁴ Bq
セシウム 137 放出量	約 6.1×10 ⁴ Bq
年間の実効線量	約 9.3×10 ⁻⁷ mSv

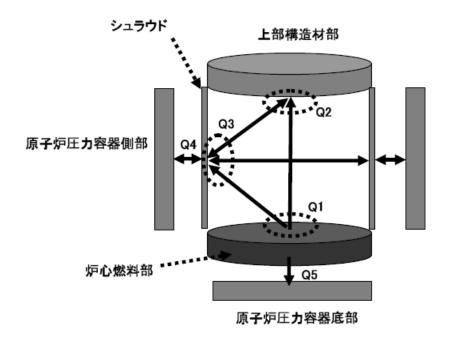
3.2 事故相当

炉心燃料温度と上部構造材温度の時間変化を図-5に示す。原子炉注水停止から温度は上昇し、注水停止から7時間の注水再開の時点で炉心燃料温度は約260℃、上部構造材温度は約110℃まで上昇するが、注水再開により速やかに冷却され、事象は収束する。

本事象時に放出されるセシウム量及び敷地境界での実効線量について評価した結果は下表のとおりとなる。

セシウム 134 放出量	約 2. 3×10 ⁵ Bq
セシウム 137 放出量	約 2.8×10 ⁵ Bq
年間の実効線量	約4.3×10 ⁻⁶ mSv

3.3 シビアアクシデント相当


炉心燃料温度と上部構造材温度の時間変化を図−6に示す。原子炉注水停止から温度は上昇し、注水停止から12時間の注水再開の時点で炉心燃料温度は約330℃、上部構造材温度は約120℃まで上昇するが、注水再開により速やかに冷却され、事象は収束する。

本事象時に放出されるセシウム量及び敷地境界での実効線量について評価した結果は下表のとおりとなる。

セシウム 134 放出量	約 1.1×10 ⁶ Bq
セシウム 137 放出量	約 1.4×10 ⁶ Bq
年間の実効線量	約 2.1×10 ⁻⁵ mSv

また,特定原子力施設から 5km, 10km 地点での年間の実効線量はそれぞれ約 3.5×10^{-6} mSv, 約 1.2×10^{-6} mSv となる。3 プラント分の放射性物質の放出を考慮した場合においても,敷地境界での年間の実効線量は約 6.3×10^{-5} mSv,特定原子力施設から 5km 地点で約 1.1×10^{-5} mSv,10km 地点で約 3.6×10^{-6} mSv となる。

以下余白

■ 輻射伝熱の経路

Q:正味の熱交換量

図-1 原子炉圧力容器輻射モデルの概要

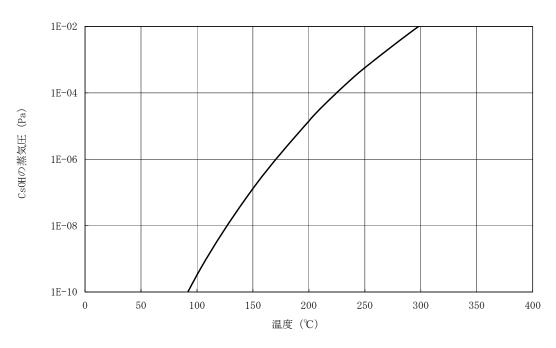


図-2 CsOH 蒸気圧の温度依存性

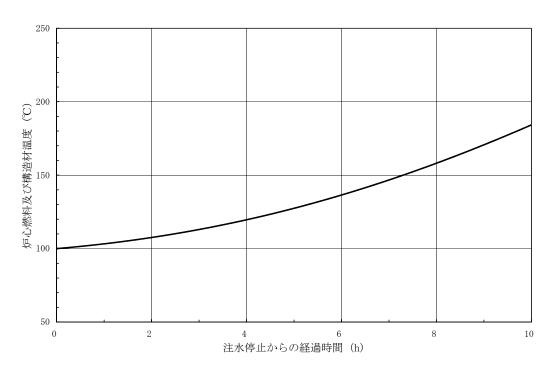


図-3 原子炉圧力容器底部の温度上昇の時間変化

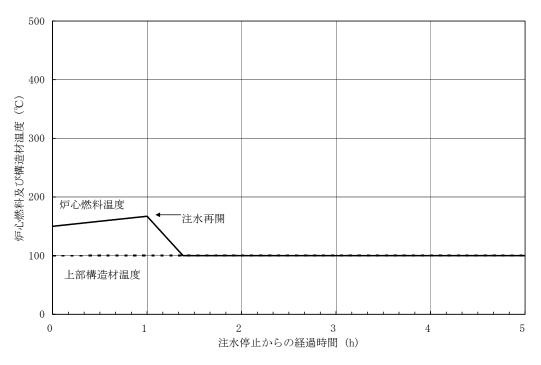


図-4 炉心燃料温度と上部構造材温度の時間変化(過渡相当)

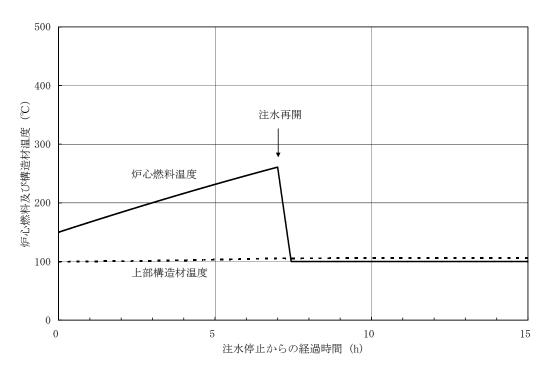


図-5 炉心燃料温度と上部構造材温度の時間変化(事故相当)

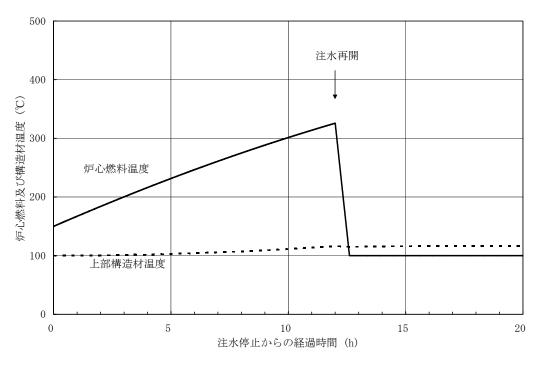


図-6 炉心燃料温度と上部構造材温度の時間変化(シビアアクシデント相当)

原子炉注水系に関する確率論的リスク評価

1.1 目的

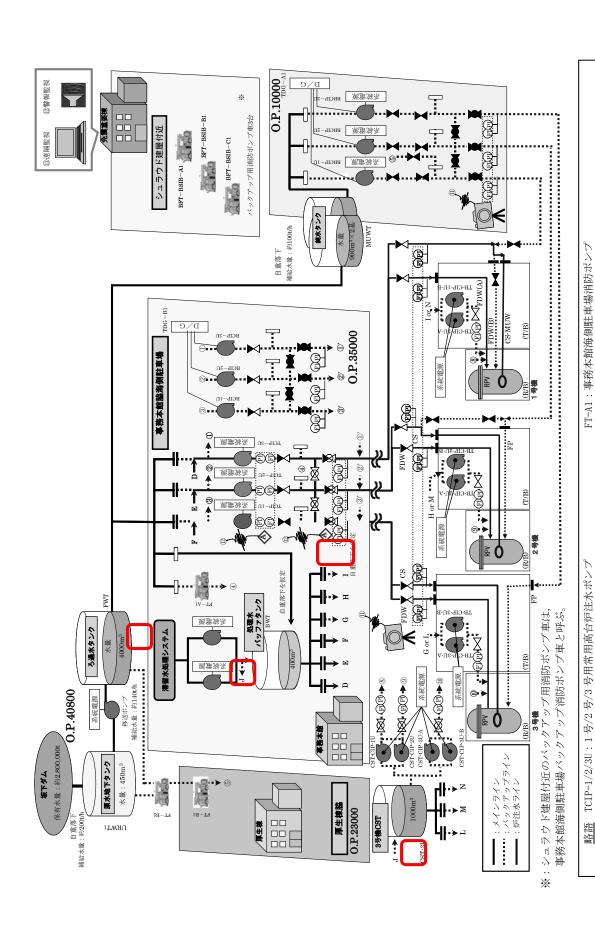
事故後の原子炉の状況において最も重要な原子炉を冷やす機能である原子炉注水系について,多重故障等の厳しい条件に基づき,原子炉注水系の機能が喪失した際の相対的な脆弱性を体系的に把握することは,安全性を向上させる上で有用な役割を果たすものである。

ここでは、原子炉注水系に対して影響が大きい事象を選定し、その後の事象進展の確率を、設備構成や故障率を基に推定し、原子炉圧力容器内及び格納容器内の燃料(以下、炉心という)が再損傷に至る頻度を評価する(別紙-1,2参照)。

1.2 方針

1号機から3号機は、津波襲来後の数日の間にシビアアクシデントに至ったものとみられており、その間で一定量の放射性物質(FP)が環境に放出されたものと考えられる。 このような状況を考慮し、ここでの評価方針としては、原子炉圧力容器内及び格納容器内に残存しているFPの相当量が環境へ放出される事象を対象とする。

1.3 評価対象


本評価では、原子炉圧力容器内及び格納容器内に残存している FP の相当量が環境へ放出される事象として、炉心再露出及び炉心再損傷に至る頻度を評価対象とする。なお、原子炉注水系が一定時間停止すると、炉心再露出に至ることから、原子炉注水系が停止する事象を原子炉注水系機能喪失と呼ぶ。

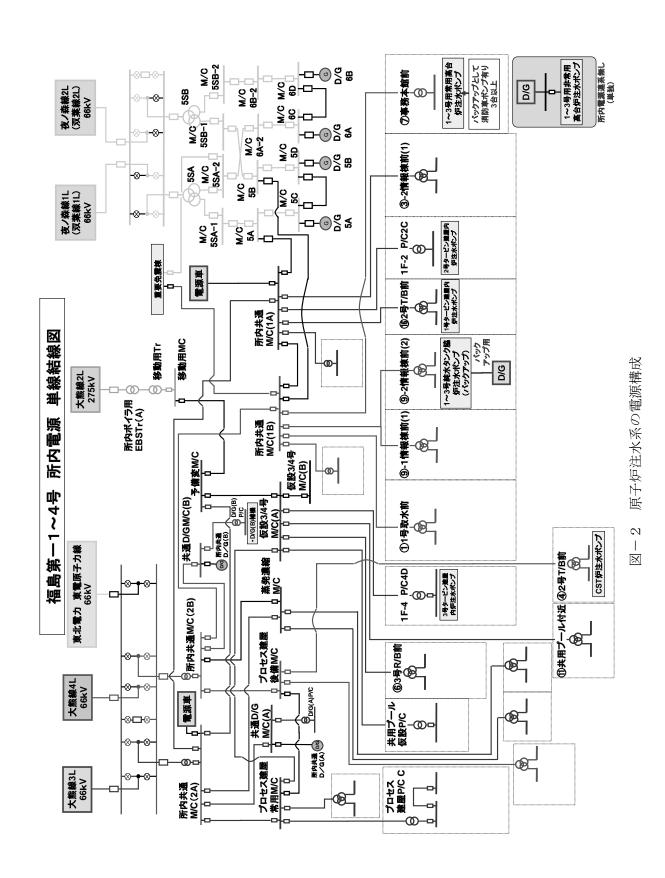
また,格納容器の気密性を確保できていないと考えられることから,炉心の再損傷後から放出までの評価は炉心の再損傷頻度と同等として取り扱う。

評価対象とした原子炉注水系の構成を図-1に、原子炉注水系の電源構成を図-2に示す。

原子炉注水系機能喪失に至る起因事象は、安定的な原子炉への注水を阻害する要因(ハザード)が発電所内、所外のどちらに起因するかに分けて選定し、以下のとおりとした。

- ○ハザード発生箇所が発電所内の場合
 - (1) 常用高台炉注水ポンプトリップ
 - (2) 注水ライン機能喪失
 - (3) 一次水源からの供給機能喪失
 - (4) 外部電源喪失(地震を除く)
 - (5) 所内共通 M/C(1A)/(1B) 盤火災
- ○ハザード発生箇所が発電所外の場合
 - (6) 外部電源喪失(地震)
 - (7) 大津波事象

TBCIP-1/2/3U-A/B:1 号/2 号/3 号用タービン建屋内炉注水ポンプ


CST-CIP-1/2/3U:1号/2/号/3号用 CST 炉注水ポンプ

BBCID-1/2/3U:1 号/2/号/3 号用純水タンク臨炉注水ポンプ BCIP-1/2/3U:1 号/2 号/3 号用非常用高台炉注水ポンプ

BFT-BSIB-A1/B1/C1 事務本館海側駐車場バックアップ消防ポンプ車

FT-B2: ろ過水タンク脇消防ポンプ

FT-B1:厚生棟脇消防ポンプ

Ⅱ-2-1-添6-3

1.4 原子炉注水系機能喪失の判定条件

これまで比較的安定して冷却してきた燃料が露出すると、燃料温度は上昇する。ただし、原子炉停止から時間が経過していることから、炉内の崩壊熱量は大幅に低減しており、燃料が露出しても直ちに燃料が溶融し、FPが環境に放出されることにはならない。ここで、炉心再損傷の判定条件として、炉心の温度が上昇し、3プラント同時に炉心損傷した際の敷地境界の線量が5mSv以下となることとした。添付資料-1の手法により原子炉注水系機能喪失からこの判定条件に至るまでの時間を評価した結果、原子炉注水系機能喪失から、34時間後までに炉心への注水に成功すれば、炉心再損傷を防止できるものとし、34時間以内に注水を復旧できない場合を炉心再損傷とした。

1.5 評価結果

起因事象発生から炉心再損傷に至るまでの頻度を評価した。

炉心再損傷が発生する頻度(点推定値)は表−1及び図−3に示すとおりであった。 各起因事象の評価結果の概要について以下に示す。

(1) 常用高台炉注水ポンプトリップ

常用高台炉注水ポンプの共通原因故障による 3 台の機能喪失により、ポンプトリップし、炉注水の再開に失敗することにより炉心が再損傷に至るシナリオである。

本モードの炉心再損傷頻度への寄与割合は1%未満である。

(2) 注水ライン機能喪失

注水ラインの破損により炉注水が中断し、炉注水の再開に失敗することにより炉心 が再損傷に至るシナリオである。

本モードの炉心再損傷頻度への寄与割合は1%未満である。

(3) 一次水源からの供給機能喪失

一次水源(バッファタンク)への給水が途絶えること等で、一次水源が枯渇することにより炉注水が中断し、炉注水の再開に失敗することにより炉心が再損傷に至るシナリオである。

本モードの炉心再損傷頻度への寄与割合は1%未満である。

(4) 外部電源喪失(地震を除く)

外部電源喪失(地震を除く)により外部電源の供給が途絶え、炉注水の再開に失敗 することにより炉心が再損傷に至るシナリオである。

本モードの炉心再損傷頻度への寄与割合は1%未満である。

(5) 所内共通 M/C(1A)/(1B) 盤火災

所内共通 M/C(1A)/(1B)盤火災により、常用高台炉注水ポンプへの電源の供給が途絶え、炉注水の再開に失敗することにより炉心が再損傷に至るシナリオである。

本モードの炉心再損傷頻度への寄与割合は1%未満である。

(6) 外部電源喪失(地震)

地震により外部電源の供給が途絶え、炉注水の再開に失敗することにより炉心が再

損傷に至るシナリオである。

本モードの炉心再損傷頻度への寄与割合は1%未満である。

(7) 大津波事象

大津波が襲来したことにより、注水ラインが流され、炉注水が中断し、注水ラインの復旧に失敗し、炉注水の再開に失敗することにより炉心が再損傷に至るシナリオである。大津波事象の発生頻度を700年に一回と見込んだこと、漂流物等により注水ラインが損傷した場合代替手段が少なくなること、及び、注水ライン損傷後の復旧作業が難航(漂流物による作業環境の悪化、滞留水の漏えいに伴う線量上昇による作業環境の悪化)することにより、注水ラインの復旧に失敗し、炉注水の再開に失敗する割合が大きくなるため、炉心再損傷頻度が大きくなる。

本モードの炉心再損傷頻度への寄与割合は約99%である。

表-1 炉心再損傷頻度の評価結果

ハザード	起因事象	起因事象発生	炉心再損傷頻	寄与割合
発生箇所		頻度(/年)	度 (/年)	(%)
発電所内	常用高台炉注水ポンプトリップ	4. 8×10^{-3}	4. 8×10^{-11}	1%未満
	注水ライン機能喪失	1.2×10^{-2}	3. 1×10^{-7}	1%未満
	一次水源からの供給機能喪失	2.0×10^{-1}	2.0×10^{-9}	1%未満
	外部電源喪失(地震を除く)	1.0×10^{-1}	1. 0×10^{-9}	1%未満
	所内共通M/C(1A)/(1B)盤火災	4. 5×10^{-2}	4. 5×10^{-10}	1%未満
発電所外	外部電源喪失(地震)	5. 7×10^{-1}	6. 1×10^{-9}	1%未満
	大津波事象	1.4×10^{-3}	5. 8×10^{-5}	99%
_	合計	_	5.9×10^{-5}	100%

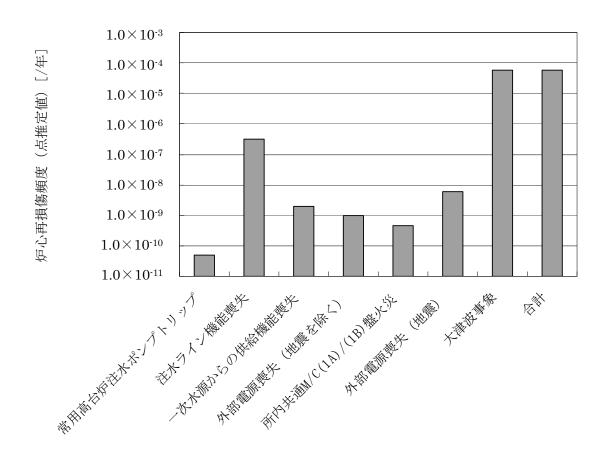


図-3 炉心再損傷頻度の評価結果

1.6 別紙

別紙-1 確率論的リスク評価手法

別紙-2 事故シーケンスの定量評価

確率論的リスク評価手法

1. 評価手法

評価手法ではまず,安定的な原子炉圧力容器及び格納容器への注水を阻害する起因事象の選定を行い,成功基準を決定し,事象の進展を考慮してイベントツリーを作成した。イベントツリーの各要素(以下,「ヘディング」という。)に対してフォールトツリー等によりシステムをモデル化し,従属故障及び人間信頼性の解析を行うとともに必要なデータベースを作成した後,事故シーケンスを定量化して炉心再損傷頻度を評価した(図ー1参照)。

2. 起因事象の選定と成功基準の設定

2.1. 起因事象

炉心再損傷に至る要因は、燃料の冷却不良によるものであり、原子炉注水系の機能が 喪失し、炉心に冷却水が供給されないことにより発生する。原子炉注水系の機能が喪失 に至る起因事象及び起因事象発生頻度は、表-1のとおりとする。

なお、今回の評価では、設備の故障、人的過誤等により、システムの信頼性が損なわれることにより炉心が再損傷する事象を選定している。

選定にあたり、安定的な原子炉への注水を阻害する要因 (ハザード) が発電所内、所外どちらに起因するかに分類した。ここで、発電所内に起因するものとしては、内的事象、内的溢水、内的火災のハザードグループが考えられ、一方、発電所外に起因するものとしては、地震、強風、外部溢水、その他の外的事象などのハザードグループが考えられる。

発電所内に起因するハザードグループのうち、内的事象としては、常用高台炉注水ポンプによる安定的な原子炉への注水を直接的に阻害する「常用高台炉注水ポンプトリップ」、「注水ライン機能喪失」、「一次水源からの供給機能喪失」、「外部電源喪失(地震を除く)」」を代表して選定することとした。なお、「内的溢水」については、発電所内の各機器(ポンプ、電源盤、タンクなど)の配置から、発生可能性が小さいと考え、評価対象外としている。また、「内的火災」として、常用高台炉注水ポンプを始め、比較的多くの炉注水ポンプが所内共通 M/C(1A)/(1B)盤より受電されているため、これを代表して選定することとした。

発電所外に起因するハザードグループのうち、実際に東北地方太平洋沖地震によって発生した外部電源喪失及び大津波事象を踏まえ、「外部電源喪失(地震)」、「大津波事象」を選定することとした。なお、上記以外のハザード及びハザード随伴事象は、地震による外部電源喪失及び大津波事象に比べれば無視しうるものとして、評価対象外とした。

¹ 発電所外での落雷、台風等のハザードによる発電所内への電源供給喪失も含まれる。

表-1 起因事象及び起因事象の発生頻度

ハザード 発生箇所	起因事象	要因	頻度(/年)	備考
発電所内	常用高台炉注水ポンプトリップ	共通原因故障に よる全台ポンプ トリップ	4.8×10 ⁻³	仮設ポンプの時間故障率 (実績と故障件数0.5件 (仮定)から算出)と共通 要因故障データから算出
	注水ライン機 能喪失	R/B内	9.0×10^{-4}	EPRIのTechnical Report 1013141を参考に算出。
	此及人	T/B内	8.4×10^{-4}	1010141で多句に弁山。
		屋外	1.0×10^{-2}	
	一次水源からの供給機能喪失	タンクの破損・損 傷等による一次 水源枯渇等	2.0×10^{-1}	仮設ポンプ (実績と故障件数0.5件(仮定)から算出), タンク破損及び閉塞の時間故障率 ((社)日本原子力技術協会「故障件数の不確実さを考慮した国内一般機器故障率の推定」を参照)から算出
	外部電源喪失 (地震を除く)	発電所外での落 雷,台風等	1. 0×10^{-1}	停止時PSR-PSA(平成20年 度実績)での9.4×10 ⁻³ /年 の10倍程度と仮定
	所内共通 M/C(1A)/(1B) 盤火災	所内共通 M/C(1A)/(1B)盤 火災	4. 5×10^{-2}	NUREG/CR-6850を参考に設 定
発電所外	外部電源喪失 (地震)	地震	5. 7×10^{-1}	外部電源喪失の実績から 算出
	大津波事象	大津波	1.4×10^{-3}	「科学」2011年10月号(岩波書店)「東北地方太平洋沖地震の断層モデルと巨大地震発生のスーパーサイクル」(東京大学地震研究所:佐竹健治氏)による700年に1回を適用

2.2 成功基準

原子炉注水系の機能に発生した異常事象を収束させるために必要な安全機能を抽出し、各緩和系の成功基準を設定した。 $1\sim3$ 号機全ての炉心の崩壊熱を除去するために必要な注水を行うために必要な最小設備数は表-2,水源は表-3のとおりとしている。具体的には、平成 24 年 12 月 7 日時点での注水量 1 号機 $4.5 \,\mathrm{m}^3/\mathrm{hr}$, 2 号機 $6 \,\mathrm{m}^3/\mathrm{hr}$, 3 号機 $6 \,\mathrm{m}^3/\mathrm{hr}$ で十分に冷却できていることから、3 基共用のポンプは $20 \,\mathrm{m}^3/\mathrm{hr}$ 1 台,1 基用のポンプは $10 \,\mathrm{m}^3/\mathrm{hr}$ 1 台を成功基準としている。

表-2 各緩和系の成功基準

緩和系	成功基準	備考
常用高台炉注水ポンプ	3台中1台運転	
タービン建屋内炉注水ポンプ	2台中1台運転	1プラント当たり
CST 炉注水ポンプ	2 台中 1 台運転	1・2 号機共用
	2台中1台運転	3 号機用
非常用高台炉注水ポンプ	3台中1台運転	
事務本館海側駐車場消防ポンプ	1台中1台運転	
(FT-A1)		
ろ過水タンク脇消防ポンプ (FT-B2)	2台中2台運転	
及び厚生棟脇消防ポンプ(FT-B1)	(FT-B1, FT-B2)	
純水タンク脇炉注水ポンプ	3台中1台運転	
事務本館海側駐車場バックアップ	3台中1台運転	
消防ポンプ		

表-3 各緩和系とその水源の関連性

緩和系	水源
常用高台炉注水ポンプ	処理水バッファタンク
	ろ過水タンク
タービン建屋内炉注水ポンプ	処理水バッファタンク
	3 号機 CST
CST 炉注水ポンプ	3 号機 CST
非常用高台炉注水ポンプ	処理水バッファタンク
	ろ過水タンク
事務本館海側駐車場消防ポンプ(FT-A1)	ろ過水タンク
ろ過水タンク脇消防ポンプ(FT-B2)及び厚生	原水地下タンク
棟脇消防ポンプ(FT-B1)	ろ過水タンク
純水タンク脇炉注水ポンプ	純水タンク
事務本館海側駐車場バックアップ消防ポンプ	- (海水可)

2.3. イベントツリーの作成

炉心再損傷頻度の評価に際しては、選定した起因事象に対して各緩和系の作動や故障を考慮して、炉心再損傷に至る事象の進展をイベントツリーとして展開し、定量化する 方法を採用した。

イベントツリー解析では、まず起因事象の発生から炉心再損傷に至るまでの設備の故障や緩和操作等をヘディングとして列挙した。次に、事象の進展を考慮し個々のヘディングにおける分岐の有無を決定し、さらに各ヘディングの分岐確率を設定した。ヘディングの分岐確率は、成功基準や時間余裕を考慮して実績データ及び後述するフォールトツリー解析を用いて評価した(図ー2参照)。

2.4. システムのモデル化

イベントツリーの定量化においては、各ヘディングに対して、対象となるシステムの 非信頼度を得るために、フォールトツリー手法によりシステムのモデル化を行った。

フォールトツリーは,成功基準に基づき,頂上事象を明確にして系統の機能喪失に至る原因を展開し作成した。フォールトツリー解析では,系統や機器の運転状態や待機状態を考慮して各状態におけるシステムの非信頼度を評価した。

フォールトツリーの作成においては、機器の故障及びその復旧、従属故障、人的過誤 等の構成要素を考慮した。

(1) 機器の故障及びその復旧

フォールトツリー解析において,主要な機器故障として待機中の機器の起動失敗,起 動後の運転継続失敗を考慮した。

• 起動失敗

デマンド故障確率を用いた。

• 運転継続失敗

系統起動後も引き続き機能が必要な機器については、時間あたりの運転継続失敗率を考慮して、運転継続失敗確率 q'として、下記の式を用いた。

$$q' = \lambda' \times T_M$$

ここで、 T_{ν} は使命時間であり、24 時間を使用した。 λ は故障率である。

使命時間については,3月11日の東北地方太平洋沖地震・大津波において,原子炉 注水系機能喪失後,24時間以内に注水を再開できていることから,24時間あれば,多 重化等の新たな対応が可能と考え,24時間を設定している。

復旧

バックアップ操作や,故障の復旧が期待できる場合には,これらによる機能回復を 考慮した。

(2) 従属故障の解析

システム信頼性評価で考慮すべき従属故障は、系統間の従属性と、機器間の従属性である。これらの従属性については、イベントツリー及びフォールトツリーの定量化の過程で考慮した。

なお,機器間従属性として共通原因故障を考慮しており,その評価対象は,仮設ポンプ等の2台又は3台起動失敗,2台又は3台継続運転失敗,仮設D/G等の2台起動失敗,及び2台継続運転失敗等である。

(3) 人間信頼性解析

人間信頼性解析は、以下のように分類し、ヒューマンエラーハンドブック (NUREG/CR-1278) の THERP 手法に基づき、作業環境を考慮に入れた工学的判断値を含めて失敗確率を算定した。なお、ここでは操作のための時間余裕等を考慮している。また、監視・復旧チームについては、福島第一原子力発電所免震棟にて、24 時間体制で十分な能力のあるメンバーが常駐している。

事象発生後の人的過誤

事象発生後,操作員に対して要求される手動操作や,操作員が対応可能なバックアップ操作について,その操作失敗を考慮した。

2.5. データベースの作成

(1) 起因事象の発生頻度

各起因事象の発生頻度は、原子炉注水系の実績及び文献値等を用いた(表-1参照)。

(2) 機器故障率関連データ

機器故障率関連データに関しては、原子炉注水系の実績及び文献値等を基に設定した。

(3) 共通原因故障データ

共通原因故障の評価に用いた β ファクタ値等は、米国 LER に基づく分析結果等のデータソースを参考にした。

なお, β ファクタ値等は,福島第一・1~3 号機の様な状況を想定したものでないことから,仮設ポンプ,仮設 D/G 等に設定した β ファクタ値を一桁大きくして感度解析(点推定値)を実施した。その結果,各起因事象の中で,機器の多重故障による影響が比較的高かった常用高台炉注水ポンプトリップ,注水ライン機能喪失及び外部電源喪失(地震)時の炉心再損傷頻度に対する感度(常用高台炉注水ポンプトリップ時の炉心再損傷頻度は約 4.8×10^{-11} /年から約 9.6×10^{-10} /年,注水ライン機能喪失は約 3.2×10^{-7} /年から約 1.9×10^{-6} /年,外部電源喪失(地震)時の炉心再損傷頻度は約 6.1×10^{-9} /年から約 2.3×10^{-8} /年)が認められ,評価結果の合計値への感度(約 5.9×10^{-5} /年から約 6.1×10^{-5}

年)も若干増加することから、データの不確実さとして認識しておく必要がある。

(4) 人的過誤確率データ

人的過誤の評価は、ヒューマンエラーハンドブック(NUREG/CR- 1278)の THERP 手法を用いた。従ってこの評価に用いるデータも NUREG/CR-1278 の値,及び,炉注水停止後の時間余裕 34 時間を考慮した工学的判断値を用いた。

(5) 時間余裕データ

時間余裕は、燃料の崩壊熱の大きさから評価され、崩壊熱が小さいほど、時間余裕が 大きくなる。

2.6. イベントツリーの定量化

選定された起因事象ごとに作成したイベントツリーに、起因事象の発生頻度を設定し、イベントツリーの分岐にフォールトツリーを結合することにより、各事故シーケンスを定量化した(別紙-2参照)。

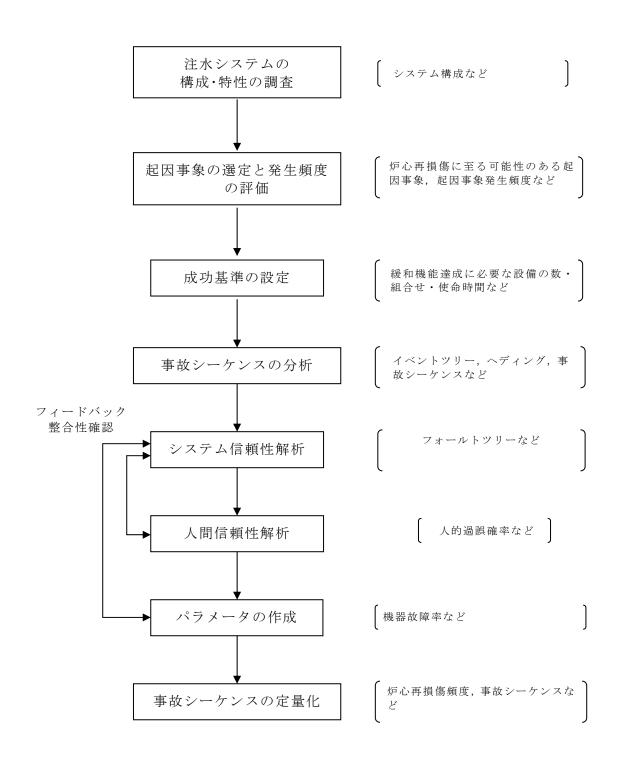
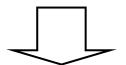
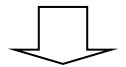



図-1 作業フロー


ヘディングの選定

・起因事象から炉心再損傷に至るまでの系統や機器の故障と緩 和操作を時系列的に列挙する。

分 岐 の 決 定

・事象の進展に応じて個々のヘディングにおける分岐の有無を 決定する。

成功基準の設定

・個々のヘディングに対して、システム構成等をもとに成功基準を設定する。

分 岐 確 率 の 設 定

・実績データ又はフォールトツリー解析の結果等に基づき分岐 確率値を設定する。

図-2 イベントツリー解析の流れ

事故シーケンスの定量評価

(1) 常用高台炉注水ポンプトリップ

常用高台炉注水ポンプトリップ時は、図-1に示すとおり、十分な能力を有する要員が待機していない場合には、復旧作業の着手失敗により、炉心再損傷に至るシナリオの頻度の寄与は大きい。

一方、図-1に示すとおり、十分な能力を有する要員が待機している場合には、注 水設備の多重性は十分に確保されているため、緩和設備の多重故障により炉心再損傷 に至るシナリオの頻度の寄与は小さい。

常用高台炉注水ポンプトリップ	復旧作業 の着手	タービン 建屋内炉 注水ポン プ	CST炉注 水ポンプ	非常用高 台炉注水 ポンプ	事務本館 海側駐車 場消防ポ ンプ車	ろ過水タ ンク脇及 び厚生棟 脇消防ポ ンプ車	純水タン ク脇炉注 水ポンプ	事務本館 海側駐車 場バック アップ消防 ポンプ車	No.	終状態	発生頻度 (/年)
									1	-	
4.8E-03		1.7E-03							2	-	
			1.1E-03						3	-	
		•		7.6E-02					4	-	
					1.0E-02				5	-	
						2.2E-02			6	-	
							1.5E-04		7	-	
								1.4E-04	8	CD	9.7E-19
	1.0E-08								9	CD	4.8E-11
										合計値	4.8E-11

図-1 常用高台炉注水ポンプトリップのイベントツリー

略語(以下,同樣)

CD: 炉心再損傷

(2) 注水ライン機能喪失

単一箇所の配管等の破損により、注水ラインが 3 プラントとも使用不能となる想定をしており、表-2-1に示すとおり、破損箇所は原子炉建屋内 (R/B) 内、タービン建屋内 (T/B内)、屋外に場合分けしている。なお、給水系及び CS 系を併用して注水しているが、起因事象発生時には、どちらの系の注水も中断している保守的な仮定を置いている。

起因事象発生の検知など,復旧作業の着手に成功する場合には,図-2-1から図-2-3に示すとおり,注水ラインとは異なる複数の注水ラインが利用可能であるため,緩和設備の多重故障により,炉心再損傷に至るシナリオの頻度の寄与は小さい。

一方,起因事象発生の検知に失敗するなど,復旧作業(機能喪失注水ライン隔離を含む)の着手に失敗した場合には,図-2-1から図-2-3に示すとおり,炉心再損傷に至るシナリオの頻度の寄与は大きい。

なお、タービン建屋内(T/B内)及び原子炉建屋内(R/B内)の注水ラインは、炉注水状態を監視する流量計(FI)や圧力計(PI)がなく、建屋内の注水ライン機能の喪失時には、原子炉圧力容器内及び格納容器内の温度・圧力の上昇により検知するため、屋外注水ラインより検知できる確率は相対的に小さく設定している。

発生頻度 [/年]位置配管割合 [%]最終的な
起因事象発生頻度 [/年]1. 2E-02R/B8%9. 0E-04T/B7%8. 4E-04屋外85%1. 0E-02

表-2-1 注水ライン機能喪失の起因事象発生頻度

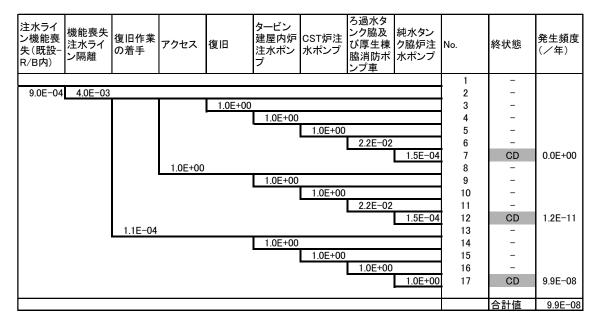


図-2-1 注水ライン機能喪失のイベントツリー $(R/B \, h)$ (1/3)

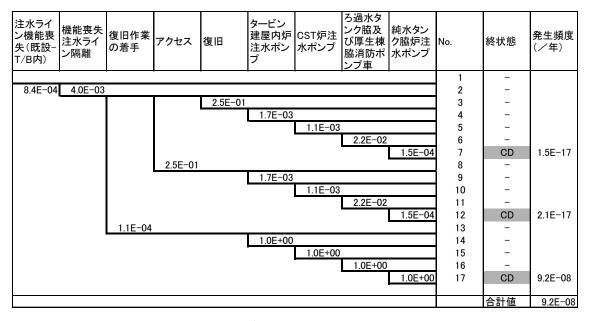


図-2-2 注水ライン機能喪失のイベントツリー (T/B 内) (2/3)

注水ライン機能喪 失(屋外)	復旧作業 の着手	アクセス	復旧	タービン 建屋内炉 注水ポン プ	CST炉注 水ポンプ	ろ過水タ ンク脇及 び厚生棟 脇消防ポ ンプ車	純水タン ク脇炉注 水ポンプ	No.	終状態	発生頻度 (/年)
								1	-	
1.0E-02			1.0E-04					2	-	
				1.7E-03				3	-	
					1.1E-03			4	-	
						2.2E-02		5	-	
							1.5E-04	6	CD	2.6E-17
		1.0E-04						7	-	
				1.7E-03				8	-	
					1.1E-03			9	-	
						2.2E-02		10	-	
							1.5E-04	•	CD	2.6E-17
	1.2E-05							12	-	
				1.0E+00				13	_	
					1.0E+00			14	-	
						1.0E+00		15	-	
							1.0E+00	16	CD	1.2E-07
									合計値	1.2E-07

図-2-3 注水ライン機能喪失のイベントツリー (屋外) (3/3)

(3) 一次水源からの供給機能喪失

一次水源からの供給機能喪失時は、図-3に示すとおり、十分な能力を有する要員が待機していない場合には、復旧作業の着手失敗により、炉心再損傷に至るシナリオの頻度の寄与は大きい。

一方、図-3に示すとおり、十分な能力を有する要員が待機している場合には、水源の多重性は十分に確保されているため、緩和設備の多重故障により炉心再損傷に至るシナリオの頻度の寄与は小さい。

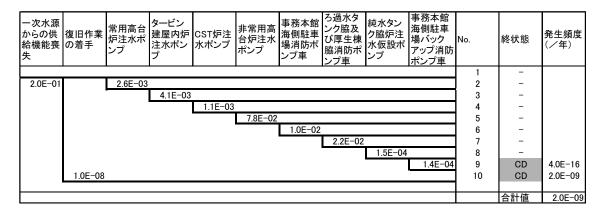


図-3 一次水源からの供給機能喪失のイベントツリー

(4) 外部電源喪失(地震を除く)

外部電源喪失(地震を除く)時は,図-4-1に示すとおり,十分な能力を有する要員が待機していない場合には,復旧作業の着手失敗により,炉心再損傷に至るシナリオの頻度の寄与は大きい。

一方,図-4-2及び図-4-3に示すとおり,十分な能力を有する要員が待機している場合には,非常用D/G,電源車及び消防車のように,代替電源の多重性及び多様性が十分に確保されているため,緩和設備の多重故障により炉心再損傷に至るシナリオの頻度の寄与は小さい。

外部電源 喪失(地 震を除く)	復旧作業 の着手	外電復旧	No.	終状態	発生頻度 (/年)
			1 – 9	TE1へ	_
1.0E-01		1.0E-01	10 - 18	TE2へ	_
	1.0E-08		19	CD	1.0E-09
	•			合計値	1.0E-09

図-4-1 外部電源喪失(地震を除く)時のイベンツツリー (1/3)

成功	炉注水ポ	タービン 建屋内炉 注水ポン プ	CST炉注 水ポンプ	非常用高 台炉注水 ポンプ	事務本館 海側駐車 場消防ポ ンプ車	ろ過水タ ンク脇及 び厚生棟 脇消防ポ ンプ車	純水タン ク脇炉注 水ポンプ	事務本館 海側駐車 場バック アップ消防 ポンプ車	No.	終状態	発生頻度 (/年)
									1	_	
	1.3E-04								2	_	
		1.7E-03							3	_	
	'		1.1E-03						4	-	
		,		7.6E-02					5	_	
					1.0E-02				6	-	
						2.2E-02			7	_	
1.4E-04									8	_	
1.4E-04									9	CD	2.6E-15
										合計値	2.6E-15

図-4-2 外部電源喪失 (地震を除く) 時のイベンツツリー (2/3) (TE1: 外電復旧成功時)

外電復旧 失敗	常用高台 炉注水ポ ンプ再起 動	建屋内炉	CST炉注 水ポンプ	非常用高 台炉注水 ポンプ	事務本館 海側駐車 場消防ポ ンプ車	ろ過水タ ンク脇 び厚生味 脇消防ポ ンプ車	純水タン ク脇炉注 水ポンプ	事務本館 海側駐車 場バック アップ消防 ポンプ車	No.	終状態	発生頻度 (/年)
									10	-	
	1.8E-04								11	-	
		1.8E-03							12	-	
		-	1.2E-03						13	-	
				7.6E-02					14	-	
					1.0E-02				15	-	
						2.2E-02			16	-	
							1.5E-04		17	-	
								1.4E-04	18	CD	4.4E-15
										合計値	4.4E-15

図-4-3 外部電源喪失(地震を除く)時のイベンツツリー(3/3) (TE2:外電復旧失敗時)

(5) 所内共通 M/C(1A)/(1B) 盤火災

所内共通 M/C(1A)/(1B)盤火災時には、図-5に示すとおり、十分な能力を有する要員が待機していない場合には、復旧作業の着手失敗により、炉心再損傷に至るシナリオの頻度の寄与は大きい。

一方、図-5に示すとおり、十分な能力を有する要員が待機している場合には、非常用D/G、電源車及び消防車のように、代替電源の多重性及び多様性は十分に確保されているため、緩和設備の多重故障により炉心再損傷に至るシナリオの頻度の寄与は小さい。

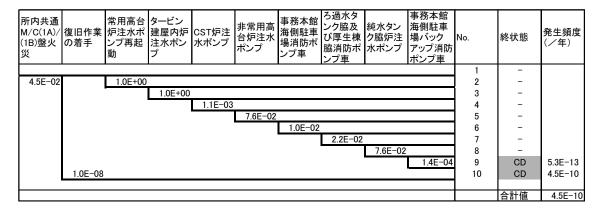


図-5 所内共通 M/C(1A)/(1B) 盤火災時のイベントツリー

(6) 外部電源喪失(地震)

地震による外部電源喪失には,図-6-1に示すとおり,十分な能力を有する要員が待機していない場合には,復旧作業の着手失敗により,炉心再損傷に至るシナリオの頻度の寄与は大きい。また,図-6-3に示すとおり,外電復旧が失敗した場合には,地震の影響により,注水設備の再起動が困難になっていることから,炉心再損傷に至るシナリオの頻度の寄与は大きい。

一方、図-6-2に示すとおり、十分な能力を有する要員が待機していることにより、外電復旧に成功する場合には、緩和設備の多重故障により炉心再損傷に至るシナリオの頻度の寄与は小さい。

外部電源 喪失(地 震)	復旧作業 の着手	[旧作業)着手		終状態	発生頻度 (/年)	
			1 – 9	STE1~	-	
5.7E-01	5.7E-01		10 - 18	STE2~	-	
	1.0E-08		19	CD	5.7E-09	
				合計値	5.7E-09	

図-6-1 外部電源喪失(地震)時のイベントツリー (1/3)

外電復旧成功	常用高台 炉注水ポ ンプ再起 動	建屋内炉	CST炉注 水ポンプ	非常用高台炉注水ポンプ	事務本館 海側駐車 場消防ポ ンプ車		純水タン ク脇炉注 水ポンプ	事務本館 海側駐車 場バック アップ消防 ポンプ車	No.	終状態	発生頻度 (/年)
	-	•	-	-	-	•	-		1	-	
	7.5E-04								2	-	
		1.1E-02							3	-	
			7.2E-03						4	-	
				3.6E-01					5	-	
					3.4E-02				6	-	
						6.8E-02			7	-	
8.3E-04										-	
4.3E-04										CD	9.1E-13
	•	•		•	•			•		合計値	9.1E-13

図-6-2 外部電源喪失 (地震) 時のイベントツリー (2/3) (STE1: 外電復旧成功時)

外電復旧 失敗	常用高台 炉注水ポ ンプ再起 動	建屋内炉	CST炉注 水ポンプ	非常用高 台炉注水 ポンプ	事務本館 海側駐車 場消防ポ ンプ車	レンン肺及	純水タン ク脇炉注 水ポンプ	事務本館 海側駐車 場バック アップ消防 ポンプ車	No.	終状態	発生頻度 (/年)
									10	-	
	9.3E-03								11	-	
		1.9E-02							12	-	
			1.6E-02						13	-	
				3.6E-01					14	-	
					3.4E-02				15	_	
6.8E-02									16	_	
3.9E-03									17	-	
								4.3E-04	18	CD	4.3E-10
										合計値	4.3E-10

図-6-3 外部電源喪失(地震)時のイベントツリー(3/3) (STE2:外電復旧失敗時)

(7) 大津波事象

大津波(2011年3月11日に発生した津波規模を想定)が襲来した際には、0P. 10,000の地上高付近に設置されている、タービン建屋内炉注水ポンプ、CST 炉注水ポンプ、純水タンク脇炉注水ポンプによる注水機能が失われているとした保守的な仮定を置いている。

図-7に示すとおり、津波対策により強化した OP.10,000 の地上高にある炉注水ラインに損傷がない場合には、高台に設置している注水設備による注水は継続可能である。

一方,図-7に示すとおり,注水ラインが損傷した場合には,原子炉圧力容器及び格納容器への注水が途絶え,津波被害(漂流物による作業環境の悪化,滞留水の漏えいに伴う線量上昇による作業環境の悪化)により現場にアクセスすることが困難になることが予想され,事務本館海側駐車場バックアップ消防車のための新しい注水ラインの確保に失敗すること,及び,並行で作業を進めると想定される常用高台炉注水ポンプ,非常用高台炉注水ポンプ,事務本館海側駐車場消防ポンプ及びろ過水タンク脇及び厚生棟脇消防ポンプからの炉注水ラインの復旧にも失敗することにより,炉心再損傷に至るシナリオの頻度の寄与は大きい。

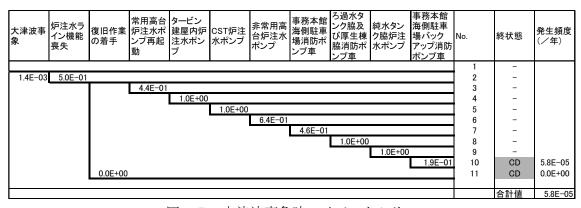


図-7 大津波事象時のイベントツリー