泊	発電所1号炉審査資料
資料番号	HTN1-PLM30(冷停)-耐震 改3
提出年月日	平成 31 年 2 月 14 日

泊発電所1号炉 高経年化技術評価 (耐震安全性評価)

補足説明資料

平成 31 年 2 月 14 日 北海道電力株式会社 : 枠囲みの内容は機密情報に属しますので公開できません。

今回提出する範囲

目次

1.	概要	1
2.	基本方針 ·····	1
3.	評価対象と評価手法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
3.	.1 評価対象 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
	3.1.1 耐震安全性評価対象機器·····	4
	3.1.2 耐震安全上考慮する必要のある経年劣化事象の抽出・・・・・・・・・・・・	4
3.	.2 評価手法	7
	3.2.1 主な適用規格・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
	3.2.2 冷温停止状態が維持されることを前提とした評価における劣化評価期間・・	7
	3.2.3 耐震安全性評価の評価手法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
3.	.3 評価用地震力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
3.	.4 評価用地震動 ·····	14
3.	.5 代表の選定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
4.	代表の耐震安全性評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	19
4.	.1 耐震安全性評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	19
	4.1.1 低サイクル疲労・・・・・	19
	4.1.2 高サイクル熱疲労・・・・・	20
	4.1.3 中性子照射脆化	20
	4.1.4 熱時効 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	21
	4.1.5 中性子照射による靱性低下・・・・・	21
	4.1.6 中性子及びγ線照射脆化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	22
	4.1.7 応力腐食割れ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	22
	4.1.8 摩耗	23
	4.1.9 流れ加速型腐食・・・・・	23
	4.1.10 全面腐食	24
	4.1.11 動的機能維持に係る耐震安全性評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	25
	4.1.12 照射誘起型応力腐食割れ・・・・・	27
4	.2 現状保全 ······	28
4	.3 総合評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	28
5.	まとめ ・・・・・	29
5.	.1 審査ガイド適合性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	29
5.	.2 保守管理に関する方針として策定する事項・・・・・・・・・・・・・・・・・・・・・・・	33

別紙1.	建設後の耐震補強の実績について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
別紙2.	耐震安全性評価に用いる現行の JEAG4601 以外の値を適用した
	ケースについて・・・・・ 2-1
別紙3.	冷温停止状態における耐震安全上考慮する必要のある経年劣化事象の
	発生・進展について
別紙4.	機器・配管に係る、比率で示された耐震安全性評価結果
	(疲労累積係数を除く)について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
別紙5.	主蒸気管の伸縮継手の疲労割れに対する耐震安全性評価について・・・・・ 5-1
別紙6.	アンカーサポート取付部(余熱除去系統配管)の疲労割れに対する
	耐震安全性評価について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
別紙7.	余熱除去系統配管の高サイクル熱疲労割れに対する耐震安全性評価
	について
別紙8.	原子炉容器の中性子照射脆化に対する耐震安全性評価について・・・・・ 8-1
別紙9.	炉心そうの中性子照射による靭性低下に対する耐震安全性評価について・9-1
別紙 10.	原子炉容器サポート(サポートブラケット(サポートリブ))の
	中性子及びγ線照射脆化に対する耐震安全性評価について・・・・・・ 10-1
別紙 11.	低水質廃液蒸発装置(蒸発器胴板)の応力腐食割れに対する
	耐震安全性評価について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
別紙 12.	蒸気発生器支持脚(ヒンジ摺動部)の摩耗に対する耐震安全性評価
	について・・・・・・ 12-1
別紙 13.	主蒸気系統配管他の内面からの腐食(流れ加速型腐食)に対する
	耐震安全性評価について ・・・・・ 13-1
別紙 14.	ディーゼル機関空気冷却器伝熱管他の内面腐食(流れ加速型腐食)
	に対する耐震安全性評価について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
別紙 15.	制御用空気だめ他の腐食(全面腐食)に対する耐震安全性評価について 15-1
別紙 16.	バッフルフォーマボルトの照射誘起型応力腐食割れが抽出されない理由
	について

別紙3

タイトル	冷温停止状態における耐震安全上考慮する必要のある経年劣化事象の 発生・進展について
説明	冷温停止状態における耐震安全上考慮する必要のある経年劣化事象(以 下「◎事象」と記載)の抽出手順及び抽出結果について以下に示す。
	 「◎事象」の抽出手順 「◎事象」は以下の手順により抽出した。(添付-1) ・ステップ1 「技術評価」で想定される経年劣化事象のうち,「○事象*1」及び「△ 事象*2」を抽出。 ・ステップ2 ステップ1で抽出した事象について,「現在発生しているか,又は将 来にわたって起こることが否定できないもの」を抽出。 ・ステップ3 ステップ2で抽出した事象について,「振動応答特性上又は構造・強 度上「軽微もしくは無視」できない事象」を「◎事象」として抽出。
	 ※1「○事象」:高経年化対策上着目すべき経年劣化事象 ※2「△事象」:高経年化対策上着目すべき経年劣化事象ではない事象 (日常劣化管理事象)
	なお、上記「 [©] 事象」抽出手順のステップ2において、流れ加速型腐食 及び応力腐食割れについては、冷温停止状態における発生・進展のなしと 可能性ありの区分があることから、表 3-1 及び表 3-2 のとおりそれぞれ整 理した。

		Ref Part Ref<	区分		機種	経年劣化事象 及び ステップ2判別結	名 果※	対象機器	 冷温停止状態 において 発生・進展が 想定されない理
 	停止 軟 整 空 丸 し 中 中 中 中 中 中 中 中 中 市 中 市 中 中 中 中 市 中 中 中 中 中 市 中 中 中 市 中 中 中 市 中 中 中 市	停止 中	冷温	配管	炭素鋼配管	母管の腐食 (流れ加速型腐 食)	0	主蒸気系統配管,主 給水系統配管,蒸気 発生器ブローダウン 系統配管	
			停止状態で		仕切弁	弁箱等の腐食 (流れ加速型腐 食)	0	主蒸気系統及び主給 水系統の仕切弁	内部に流れがあ 条件でのみ発生 進展する事象で
L スイング逆 止弁 弁箱等の腐食 (流れ加速型腐 食) ○ 主蒸気隔離弁 熱交 換器 多管円筒形 熱交換器 伝熱管の内面 腐食(流れ加速 型腐食) ○ 原子炉補機冷却水冷 却器 - 配管 炭素鋼配管 母管の腐食 (流れ加速型腐 食) ○ 庸助蒸気系統配管 - 配管 炭素鋼配管 母管の腐食 (流れ加速型腐 食) ○ 補助蒸気系統の仕切 - 弁 仕切弁 弁箱等の腐食 (流れ加速型腐 食) ○ 補助蒸気系統の仕切 - 弁 玉形弁 分箱等の腐食 (流れ加速型腐 食) ○ 補助蒸気系統の玉形 弁 - 空調 設備 冷凍機 愛気冷却器伝熱管 (流れ加速型腐 食) ○ 補助蒸気系統の玉形 弁 - 空調 設備 冷凍機 愛気冷却器伝 (流れ加速型腐 (流れ加速型腐 食) ○ 補助蒸気系統の玉形 弁 - 電源 設備 ディーゼル 機関 空気冷却器伝 空気冷却器伝 (流れ加速型腐 	L スイング逆 止弁 弁箱等の腐食 (流れ加速型腐 食) 三 主蒸気隔離弁 熱交 換器 多管円筒形 熱交換器 伝熱管の内面 腐食(流れ加速 型腐食) ○ 原子炉補機冷却水冷 却器 - 配管 炭素鋼配管 母管の腐食 (流れ加速型腐 食) ○ 補助蒸気系統配管 - 配管 炭素鋼配管 母管の腐食 (流れ加速型腐 食) ○ 補助蒸気系統の仕切 - 弁 仕切弁 弁箱等の腐食 (流れ加速型腐 食) ○ 補助蒸気系統の仕切 - 弁 玉形弁 弁箱等の腐食 (流れ加速型腐 (流れ加速型腐 食) ○ 補助蒸気系統の玉形 - 五形弁 弁箱等の腐食 (流れ加速型腐 (流れ加速型腐 食) ○ 補助蒸気系統の 分 - 予約 - - - - -	レ スイング逆 止弁 弁箱等の腐食 (流れ加速型腐 食) ○ 主蒸気隔離弁 熱交 換器 多管円筒形 熱交換器 伝熱管の内面 腐食(流れ加速型腐 食) ○ 原子炉補機冷却水冷 却器 - 配管 炭素鋼配管 母管の腐食 (流れ加速型腐 食) ○ 補助蒸気系統配管 - 和 仕切弁 弁箱等の腐食 (流れ加速型腐 食) ○ 補助蒸気系統の仕切 弁 - 弁 七切弁 弁箱等の腐食 (流れ加速型腐 食) ○ 補助蒸気系統の仕切 弁 - 新着等の腐食 (流れ加速型腐 食) ○ 補助蒸気系統の正形 弁 - <t< td=""><td>発生・進展な</td><td>弁</td><td>玉形弁</td><td>弁箱等の腐食 (流れ加速型腐 食)</td><td>0</td><td>主蒸気系統及び蒸気 発生器ブローダウン 系統の玉形弁</td><td>ることから,冷温体 止状態においては 進展しない。</td></t<>	発生・進展な	弁	玉形弁	弁箱等の腐食 (流れ加速型腐 食)	0	主蒸気系統及び蒸気 発生器ブローダウン 系統の玉形弁	ることから,冷温体 止状態においては 進展しない。
次 換器熱交 熱交換器多管円筒形 熱交換器伝熱管の内面 腐食(流れ加速 型腐食)○原子炉補機冷却水冷 却器 $-$ 冷 温 停 止 状態 で発 生 ・ 進 雨配管炭素鋼配管母管の腐食 (流れ加速型腐 食)○補助蒸気系統配管 $-$ 	 換器多管円筒形 熱交換器伝熱管の内面 腐食(流れ加速 型腐食) 〇原子炉補機冷却水冷 却器 一 冷温 停 停 中 記配管炭素鋼配管母管の腐食 (流れ加速型腐 食) 〇補助蒸気系統配管 一 弁 化切弁弁箱等の腐食 (流れ加速型腐 食) 〇補助蒸気系統の仕切 弁 一 弁 要 調 設備 ディーゼル 機関 分面腐食 (流れ加速型腐 食) 〇補助蒸気系統の玉形 弁 空調 酸備 設備 ディーゼル 機関 の内面腐食 (流れ加速型腐 食) 〇 字 空調用冷凍機 一 ※ステップ2 *ディーゼル 説 ア (つ」: 評価対象として抽出しステップ3へ		L		スイング逆 止弁	弁箱等の腐食 (流れ加速型腐 食)	0	主蒸気隔離弁	
	冷温 温 停止 北 振 管 止 水 整 で 	冷山 山 中 中 第 <br< td=""><td></td><td>熱交 換器</td><td>多管円筒形 熱交換器</td><td>伝熱管の内面 腐食(流れ加速 型腐食)</td><td>0</td><td>原子炉補機冷却水冷 却器</td><td></td></br<>		熱交 換器	多管円筒形 熱交換器	伝熱管の内面 腐食(流れ加速 型腐食)	0	原子炉補機冷却水冷 却器	
止 状態 で発生 進 用 可能 と 取弁仕切弁弁箱等の腐食 (流れ加速型腐 食)·補助蒸気系統の仕切 弁- か 年 玉形弁 分箱等の腐食 (流れ加速型腐 	止 状態 (売 発生 生 進 度 サ弁仕切弁弁箱等の腐食 (流れ加速型腐 食)○補助蒸気系統の仕切 弁一 弁玉形弁弁箱等の腐食 (流れ加速型腐 食)○補助蒸気系統の玉形 弁- 空調 設備冷凍機疑縮器伝熱管 の内面腐食 (流れ加速型腐 食)○空調用冷凍機 一- 空調 酸備ディーゼル 機関空気冷却器伝 熱管の内面の 腐食 (流れ加速型腐 食)○空調用冷凍機 ディーゼル機関 ー ※ステップ2<	止 状態 ア発生 ・ 進 用 中弁仕切弁弁箱等の腐食 (流れ加速型腐 食)○補助蒸気系統の仕切 弁一 ア発生 ・ 進 構 中 弁玉形弁分箱等の腐食 (流れ加速型腐 食)○補助蒸気系統の玉形 弁一 空調 設備 費 額 一 電源 設備 設備 ご ディーゼル 機関 空気冷却器伝 熱管の内面の 腐食 (流れ加速型腐 食)○ 福助蒸気系統の玉形 弁一 ご で 調 (流れ加速型腐 食)○ ぞパーゼル機関 ディーゼル機関 ー- ※ステップ2 り 別結果「〇」:: 評価対象として抽出しステップ3へ	冷温停	配管	炭素鋼配管	母管の腐食 (流れ加速型腐 食)	0	補助蒸気系統配管	
光 ・ 進 展 可能 性 あり弁 	$\frac{x}{2}$ ・ 進 展 可能 性 数 例 $+$ $\pm \mathbb{K} + \mu$ $+ \hat{\mu} \hat{\pi} \hat{\pi} \hat{\pi} \hat{\pi} \hat{\pi} \hat{\pi} \hat{\pi} \pi$	$\frac{2}{2}$ ・ 進 展 市 能 性 支 り $+$ エ形弁 $+$ 弁箱等の腐食 (流れ加速型腐 食) $-$ 補助蒸気系統の玉形 弁 $-$ 空調 設備 設備 設備 設備 アイーゼル 機関※編器伝熱管 の内面腐食 (流れ加速型腐 食) $ -$ ご 変気冷却器伝 熱管の内面の 腐食 (流れ加速型腐 食) $ -$ ボステップ2<	止状態で発	弁	仕切弁	弁箱等の腐食 (流れ加速型腐 食)	0	補助蒸気系統の仕切 弁	_
可 能 あり 空調 設備 冷凍機 凝縮器伝熱管 の内面腐食 (流れ加速型腐 食) 空調用冷凍機 一 2 設備 冷凍機 空調用冷凍機 一 電源 設備 ディーゼル 機関 空気冷却器伝 熱管の内面の 腐食 (流れ加速型腐 合) ○ 空調用冷凍機 一	可能性かり 2空調 設備空調 冷凍機検線器伝熱管 の内面腐食 (流れ加速型腐 食)○ 空調用冷凍機空調用冷凍機 $-$ 電源 設備ディーゼル 機関空気冷却器伝 熱管の内面の 腐食 (流れ加速型腐 食)○ ディーゼル機関ディーゼル機関 ー $-$ ※ステップ2判別結果「〇」:評価対象として抽出しステップ3へ	可能性多り 空調 設備 冷凍機 凝縮器伝熱管 の内面腐食 (流れ加速型腐 食) ○ 空調用冷凍機 一 電源 設備 ディーゼル 機関 空気冷却器伝 熱管の内面の 腐食 (流れ加速型腐 食) ○ ディーゼル機関 一 ※ステップ2判別結果「〇」: 評価対象として抽出しステップ3へ	発生・進展	弁	玉形弁	弁箱等の腐食 (流れ加速型腐 食)	0	補助蒸気系統の玉形 弁	_
電源 ディーゼル 設備 炭関 ディーゼル 機関 ご この この	 	 	可能性あり	空調 設備	冷凍機	凝縮器伝熱管 の内面腐食 (流れ加速型腐 食)	0	空調用冷凍機	_
	※ステップ2判別結果「〇」:評価対象として抽出しステップ3へ	※ステップ2判別結果「〇」:評価対象として抽出しステップ3へ		電源 設備	ディーゼル 機関	空気冷却器伝 熱管の内面の 腐食 (流れ加速型腐 食)	0	ディーゼル機関	_

区分	ł	機種	経年劣化事象名 及び ステップ2判別結果》	×	対象機器	冷温停止状態 において 発生・進展が 想定されない理
X		蒸気 発生器	伝熱管の損傷(管板 拡管部及び拡管境界 部応力腐食割れ)	0	蒸気発生器	高温域でのみ発
7温 停 止	熱交 換器	蒸気 発生器	伝熱管の損傷(小曲 げUベンド部応力腐 食割れ)	0	蒸気発生器	進展する事象でお ことから、冷温停」 状態においては
状態で発		蒸気 発生器	600系ニッケル基合 金使用部位の応力腐 食割れ	0	蒸気発生器	展しない。
生・進展なし	炉内 構造 物	炉 内 構 造物	バッフルフォーマボ ルト等の照射誘起 型応力腐食割れ	×	炉内構造物	通常運転時の燃 からの中性子照り 及び高温環境に って発生・進展す 事象であることか 冷温停止状態に いては進展しない
冷	配管	ステンレ ス 鋼 配 管	母管の外面からの 応力腐食割れ	0	 余熱除去系統配管,補助 蒸気系統配管,蒸気発生 器ブローダウン系統配管, 1次系試料採取系統配管 (空気),1次冷却系統配管 (空気),1次系統配管 (空気),1次系統配管 (空気),1次系統配管 (空気),1次系統配管 	
1温停止世		玉形弁	弁箱等の応力腐食 割れ	0	液体廃棄物処理系統及 び固体廃棄物処理系統 の玉形弁	_
礼態で	弁	バタフラ イ弁	弁箱等の応力腐食 割れ	0	液体廃棄物処理系統の バタフライ弁	—
発生		リフト逆 止弁	弁箱等の応力腐食 割れ	0	液体廃棄物処理系統のリフト逆止弁	
・ 進 展		安全逃がし弁	弁箱等の応力腐食 割れ	0	洗浄排水処理装置高圧ポンプ出口逃がし弁	_
可能性あり	計制御備	プロセス 計測 御設備	計装用取出配管, 計器元弁,計装配 管及び計器弁の外 面からの応力腐食 割れ	0	余熱除去ライン流量,計装 用取出配管,計器元弁,計 装配管及び計器弁がステ ンレス鋼の伝送器(原子炉 格納容器内を除く屋内設置 分)	_
	空調 設備	ダクト	外板の外面からの 応力腐食割れ	0	非常用排気筒	
	12 5 8114	濃 縮 減 容設備	ステンレス鋼使用部位の応力腐食割れ	0	低水質廃液蒸発装置, 良水質廃液蒸発装置	_
	機械 設備	アスファ ルト 固 化設備	ロータ等の応力腐食割れ	0	アスファルト固化装置(ア スファルト混和機)	_
		雑固体焼 封設備	伸縮継手の応力腐 食割れ	0	雑固体焼却設備	_

2. 「◎事象」の抽出結果

1項の手順にて抽出した「◎事象」を表 3-3 に示す。この「◎事象」を 冷温停止状態における発生・進展の区分毎に評価対象機器を整理した。

表 3-3 耐震安全上考慮する必要のある経年劣化事象と冷温停止状態における 発生・進展なしと可能性あり区分及び対象機器※

区分	経年劣化事象	評価対象機器
	低サイクル疲労	余熱除去出口配管貫通部(固定式),配管サポート
		(余熱除去系統),主蒸気・主給水配管貫通部(伸
		縮式),原子炉容器,炉内構造物(炉心支持構造物),
		加圧器,蒸気発生器,1次冷却材ポンプ,1次冷
		却材管、余熱除去ポンプ、再生熱交換器、余熱隊
冷		去冷却器, 1次冷却系統配管, 余熱除去系統配管
温停		主給水系統配管,余熱除去系統弁,化学体積制御
止		系統弁,安全注入系統弁,1次冷却系統弁,重核
低態		器サポート(加圧器)
で 発	高サイクル熱疲労割れ	余熱除去系統配管
生.	中性子照射脆化	原子炉容器
進	熱時効	1次冷却材管,1次冷却材ポンプ
展 な	中性子照射による靭性低下	炉内構造物(炉心そう)
L	中性子及びγ線照射脆化	重機器サポート(原子炉容器)
	摩耗	炉内構造物(炉内計装用シンブルチューブ),重板
		器サポート (蒸気発生器,1次冷却材ポンプ),制
		御棒クラスタ
	流れ加速型腐食	主蒸気系統配管, 主給水系統配管, 蒸気発生器
		ローダウン系統配管
₹%.	応力腐食割れ	濃縮減容設備 (低水質廃液蒸発装置,良水質廃液
生冷		蒸発装置)
進停	流れ加速型腐食	原子炉補機冷却水冷却器,空調用冷凍機凝縮器,
丧 正 北 状		ディーゼル機関空気冷却器、補助蒸気系統配管
1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1		 制御用空気圧縮装置(制御用空気だめ)
<i>es</i> 19		
(木表け		┃ ■足説明資料太文 n 8 表 3 「 冷温停止状能が維持さ
ること	を前提とした評価における劣化評価	「「「「「」」」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「
		以

表 3-1 及び表 3-2 の対象範囲(流れ加速型腐食及び応力腐食割れのみ)

表 3-3の対象範囲(耐震安全性評価書 p.8表3及び補足説明資料本文 p.8表3)

ſ	技術評	価」で想定される経年劣化事象	ステップ1		ステップ2		ステップ3	備考
高経年化対策上		▲ ★ 8A 2 92 FT 1A /1 - 3F 4A		i	高経年化対策上着目すべき 経年劣化事象であるが,現 在発生しておらず,今後も 発生の可能性がないもの, 又は小さいもの	×	×	
着日すべき 経年劣化事象	∩ aC ⊿	△▲を际く維牛务化事家			現在発生しているか、又は	_	振動応答特性上又は構造・強度上 「軽微若しくは無視」できない事象 ◎	耐震安全上考慮す る必要のある経年
				n	将来にわたって起こること が否定できないもの	0	振動応答特性上又は構造・強度上 「軽微若しくは無視」できる事象	劣化事象は個別機 器ごとに抽出
		想定した劣化傾向と実際の劣化傾向の乖離が考 えがたい経年劣化事象であって,想定した劣化 傾向等に基づき適切な保全活動を行っているも		i	日常劣化管理事象である が,現在発生しておらず, 今後も発生の可能性がない もの,又は小さいもの	_	-	
	Δ	の(ただし、今後も経年劣化の進展が考えられ ない、又は進展傾向が極めて小さいと考えられ る事象であるが、保全によりその傾向が維持で	0	Γ	現在発生しているか、又は		振動応答特性上又は構造・強度上 「軽微若しくは無視」できない事象 ◎	ステップ3に係る 検討については, 「表4」にて耐震
高経年化対策上 着目すべき 経年少ル事象		きていることを確認している事象を含む。) (日常劣化管理事象)		ü	将来にわたって起こること が否定できないもの	0	振動応答特性上又は構造・強度上 「軽微若しくは無視」できる事象	安全上考慮する必 要のある経年劣化 事象を抽出
モナフル事象 ではない事象 ⁴		現在までの運転経験や使用条件から得られた材 料試験データとの比較等により、今後も経年劣 化の進展が考えられない、又は進展傾向が極め て小さいと考えられる経年劣化事象(ただし、 今後も経年劣化の進展が考えられる事象である が、保全によりその傾向が維持できていること を確認している事象を除く。) (日常劣化管理事象以外))	_		_		_	

表1 耐震安全上考慮する必要のある経年劣化事象の抽出までの手順

△:高経年化対策上着目すべき経年劣化事象ではない事象(日常劣化管理事象)

▲:高経年化対策上着目すべき経年劣化事象ではない事象(日常劣化管理事象以外)

○:評価対象として抽出

一:高経年化対策上着目すべき経年劣化事象ではない事象であり、日常劣化管理事象以外であるもの、あるいは日常劣化管理事象であるが、現在発生しておらず、今後も発生の可能性がないもの、又は小さいものとして評価対象から除外

×:高経年化対策上着目すべき経年劣化事象であるが、現在発生しておらず、今後も発生の可能性がないもの、又は小さいものとして評価対象から除外

■:振動応答特性上又は構造・強度上「軽微若しくは無視」できる事象として評価対象から除外

◎:耐震安全上考慮する必要のある経年劣化事象として抽出

*1:冷温停止状態が維持されることを前提とした場合には発生・進展が想定されないが、耐震安全性評価のために評価する事象を含む

4

別紙6

	Ē	表6-1 諸元素	表(2/2)		
評価部位	L ^(注1) (mm)	A _w (mm ²)	Z _w x (mm ³)	Z _w y (mm ³)	Z _w p (mm ³)
 ①配管とパッド の溶接部 ②パッドとラグ の溶接部 ③ラグと底板の 溶接部 					
Z _w x, Z _w y, Z (注1) Lは安全側の	L:荷重 A _w :溶接 Z _w p:各力 こ配管中	作用点から評 登部の断面積 万向の溶接部の 心から底板ま	² 価部までの₿ の断面係数 □での最長距離	巨離 進を一律に用い	いた。
 2.解析モデル及 (1)評価用荷重 評価用荷重 ポートに作用 支持点解析モデ 評価部位は 境界部である。 し,評価用荷重 	び入力 のはすデガン れる アポポート た て て	(荷重) 条件 を3次元は 反力をスペジ 添付-1に示 ラグ(固定点 め,両ブロッ いる。算出さ	0モデル化し 7トルモーダ す。 (1) であり, (1) つの解析結果 (1) れた評価用者	て S s 地震時 ル解析にて算 隣接する解析 まから得られ; 行重を表6-2に	のアンカーサ 出している。 ブロックとの た荷重を合成 [※] 示す。
	表	6-2 評価用	荷重(S s)		
方	向		荷重	一次+二次	
Fx Fy Fy Fz Mx (1) My (1) Mz (1) Mz (1)	(kN) (kN) (kN) cN・m) cN・m) cN・m) 管解析で	- - で求めた荷重	を以下のとお	らり合成して	いる。
自重:代数 (代数和: _i なお,慣性	和,慣怕 $\sum_{i=1}^{N} x_i$,縦 力は動的	生力:絶対和 ¹	, 相対変位: きい方を評信	: 絶対和 西用荷重とし	ている。

(2) 発生応力の算出

溶接部に発生する応力は、下式で算出している。本評価式は、材料力 学に基づく公式をもとにして設定したものであり、設計・建設規格や耐 震設計技術指針等に規定されたものではなく、応力集中係数に係る規定 はない。また、支持構造物は降伏点を許容値としており、許容値を厳し くする設計体系となっていることから、発生応力の算出において応力係 数を考慮する必要はないと判断している。

$$\sigma_1 = \frac{|Mx| + |Fy| \cdot L}{Z_W x} + \frac{|My| + |Fx| \cdot L}{Z_W y} + \frac{|Fz|}{A_W}$$
$$\sigma_2 = \sqrt{\left(\frac{Fx}{A_W}\right)^2 + \left(\frac{Fy}{A_W}\right)^2} + \frac{|Mz|}{Z_W p}$$

応力評価は、以下の組合せ応力を用いる。

〇パッドと配管、パッドとラグ、ラグと底板の溶接部(すみ肉溶接部) $\sigma = \sqrt{\sigma_1^2 + \sigma_2^2}$

3. 評価結果

各部位の許容応力を表6-3に、評価結果を表6-4に示す。

表6-3	許容応力 ^{※1}
100	

	部位		パッド ^{*2}	ラグ	底板
	材質		SUS304TP	STKR41	SS41
物性値	使用温度((°C)	177	177	177
	F值(MPa	a)	201	174	190
一次応力 (MF	の許容値 Pa)	S s	115	120	130
一次+二次点 (MF	x+二次応力の許容値 (MPa)		115	99	109

※1:許容値の算出は添付-2参照

※2:パッドを取り付ける配管の材質はSUS316TPである(許容値は安全側 にSUS304TPを使用しているため,記載を省略する)。

	表6-4	評価結果	
		発生応力	65 MPa
	一次応力 評価	許容応力	115 MPa
配管とパッド	H I IIIII	応力比	0.57
(評価部位①)		発生応力	59 MPa
-	→次+二次 広力評価	許容応力	115 MPa
	»о.>энт ша	応力比	0.51
		発生応力	69 MPa
	一次応力 評価	許容応力 ^{※1}	115 MPa
パッドとラグ	н ш	応力比	0.60
(評価部位②)		発生応力	63 MPa
	→次+二次 広力評価	許容応力 ^{×1}	99 MPa
		応力比	0.64
		発生応力	62 MPa
	一次応力 評価	許容応力 ^{※1}	120 MPa
ラグと底板の	H I IIIII	応力比	0.52
(評価部位③)		発生応力	57 MPa
-	→次+二次 広力評価	許容応力 ^{※1}	99 MPa
		不士至	

A-余熱除去系統配管(CV内MCP側)解析モデル(RH11)

A-余熱除去系統配管(CV内PEN側)解析モデル(RH12)

許容応力の算出

					(単位:MPa)	
アンカーサポート番号			RH - 11 - 6A			
な7 人士			N° an 18		底板	
岩以 亿			ハット	79	$16\!<\!t\!\leq\!40$	
		材質*1	SUS304TP	STKR41	SS41	
		評価温度(℃)	177	177	177	
	1	Sy (付録図表Part5表8) (at 使用温度)	149	174	190	
		Su (付録図表Part5表9) (at 使用温度)	411	373	373	
世界を任る古	2	Sy (at 常温)	205			
物性胆	3	1.35Sy	201	_	—	
I	4	0. 7Su	287	261	261	
I		F=min (②, ③, ④) *2	201	174	190	
		引張許容応力 ft=F/1.5	134	116	126	
		曲げ許容応力 fb=F/1.5	134	116	126	
	せん断許容応力 fs=F/1.5√3		77	66	73	
一次応力 の許容値	引張許容応力 1.5ft [1.5ft*] ^{*3}		201 [201]	174 [207]	189 [228]	
	曲げ許容応力 1.5fb [1.5fb*] ^{**3}		201 [201]	174 [207]	189 [228]	
	せん断許容応力 1.5fs [1.5fs*] ^{※3}		115 [115]	99 [120]	109 [130]	
一次+二 次応力の 許容値		引張許容応力 3ft	402	348	378	
		曲げ許容応力 3fb	402	348	378	
	せん断許容応力 1 5fs (すみ肉)		115	99	109	

※1:STKR41はSTKR400,SS41はSS400として評価する。

※2:使用温度が40℃を超えるオーステナイト系ステンレス鋼及び高ニッケル合金の場合の み。それ以外はF=min(①,④)

 ※3:Ss地震の一次応力評価では、JEAG4601の支持構造物規定に従い①、②の値を「告示 501号 別表第9(設計・建設規格 付録図表Part5表8)に定める値の1.2倍の 値」と読み替えて算出した値を使用する。

別紙9

٦

タイトル	炉心そうの中性子照射による靭性低下に対する耐震安全性評価について						
説明	中性子照射による材料の靭性低下が想定される炉心そう溶接部に有意な 欠陥が存在すると仮定し,Ss地震発生時の荷重を考慮して求めた応力拡 大係数Kと,中性子照射を受けたステンレス鋼のJ _{IC} 値から換算した破壊 靭性値K _{IC} とを比較することにより耐震安全性評価を行っている。評価の具 体的内容を以下に示す。						
	1. 解析条件						
	(1) 想定欠陥						
	想定欠陥は設計・建設規格を準用し,表 9-1 のとおりとした。						
	主 0_1 相宗 した角刻形出						
	A 9 1 添足した电表が小 ・ ・ ・						
	周方向 1.5t 1/4t						
	t:炉心そう板厚(=51.6 mm)						
	亀裂の想定部位(評価部位)は、図 9-1 に示すとおり、溶接部に亀裂						
	が想定されることから、下部炉心そう上部胴と下部胴の溶接部とした。						
	なお、炉心そうの応力算出時におけるバッフル構造の変形拘束の影響						
	については、炉心そうの板厚が約 52mm であるのに対し、炉心バッフル取						
	竹板を炉心そうに締結しているハレルフォーマホルトの住は約13mmであ スニトト 国古向に閉隔を開けて設置されているため 十分に小さいト						
	ることと、向力向に面喃を囲りて成直されているため、「力に小さいと 老えられる						

Г

Т

評価位置に作用する機械荷重,熱荷重,Ss地震時の荷重による各応力の重ね合わせで評価した。評価に用いた応力条件を表 9-2 に示す。

表 9-2	(単位:MPa)		
	引張応力	7.3	
(機械何里による)心力	曲げ応力	0.0	
劫共手にトス亡も	引張応力	0.0	
※何 里による応力	曲げ応力*1	10.6	
Ss地震による応力	引張応力	7.3	
스퀵	引張応力 σ _■	14.6	
	曲げ応力 σ _b	10.6	

※1: 炉心そうの内外面の温度差により生じる曲げ応力

(3) 解析モデル

炉心そうの平均半径 Rm の板厚 t に対する比「Rm/t」は約 30 と大き いことから、炉心そう胴部は亀裂付き平板で近似している。図 9-4 に 平板近似モデルを示す。また、表 9-3 に平板近似した想定欠陥の寸法 を示す。

※2 Raju-Newman の式において、板幅 w が小さいほど、平板端部の影響を受けて応力拡 大係数は大きくなる。円筒形状である炉心そうを平板にて模擬するため, 端部があ るわけではないので、平板端部の影響を考慮する必要はないと考え、十分に大きな 幅として半周分に設定している。 なお, Raju-Newman の式の適用範囲として, 亀裂半長 c と板幅 w の関係が c/w<0.5 (w>2c)と規定されている。仮に、最も板幅が小さく、平板端部の影響を受ける w=2c (77.4 mm)とした場合でも、応力拡大係数は 4.9 MPa√m となり ^(※3)、応力拡大 係数に対する板幅の影響が軽微で,許容値(51MPa√m)に対して十分な裕度があ ることを確認している。 ※3 2w=πRm (4,430.6 mm)の場合,応力拡大係数は4.7 MPa√m 表 9-3 想定した亀裂の寸法 亀裂長さ 亀裂深さ 板幅 板厚 2cа 2w t 寸法 (mm) 77.4 12.9 4,430.6 51.6 2. 解析結果 (1) 中性子照射を受けたステンレス鋼の破壊靱性値(許容値) 評価に用いるステンレス鋼の破壊靱性値 K_{IC}は,発電設備技術検査協 会「平成8年度 プラント長寿命化技術開発に関する事業報告書」で 得られたオーステナイト系照射ステンレス鋼の Juc 試験結果を用いて、 JIC 最下限値 14kJ/m²から以下の換算式により算出した破壊靱性値 KIC= 51MPa√mとした。 $K_{IC} = \sqrt{\frac{E}{(1-v^2)} \times J_{IC}}$ E:縦弾性係数 (173,000 MPa at 350℃) v:ポアソン比(0.3) J_{IC}:破壊靭性値の下限 (14 kJ/m² at 350℃) (2) 地震時の応力拡大係数 応力拡大係数の算出は,以下のとおり,平板中の半楕円表面亀裂の 応力拡大係数Kを求めるRaju-Newmanの式*を用いた。 *: Raju, I.S. and Newman, J.C., Jr., NASA Technical Paper 1578, 1979. $K = (\sigma_m + H \sigma_h) \sqrt{(\pi a/Q)} \cdot F$ ここで. $Q = 1+1.464(a/c)^{1.65}$ (a/c≦1) $F = \{M_1 + M_2(a/t)^2 + M_3(a/t)^4\} (1 - k^2 \cos^2 \phi)^{1/4} g \cdot f_w$

タイトル	主蒸気系統配管他の内面からの腐食(流れ加速型腐食)に対する 耐震安全性評価について						
説明	 評価対象ラインの抽出について 泊1号炉の高経年化技術評価における「母管の内面からの腐食(流れ加速型腐食)」に対する耐震安全性評価は、日本機械学会「加圧水型原子力発電所配管減肉管理に関する技術規格(JSME S NG1-2006)」(以下「技術規格」という。)等を反映した社内規程「泊発電所配管肉厚管理要則」で定める「流れ加速型腐食」の対象系統のうち、冷温停止状態の維持に必要なラインを抽出した。 なお、耐震重要度が高く、配管の腐食(流れ加速型腐食)による配管減肉を考慮した耐震安全性評価の結果、発生応力と許容応力の比が最大となる主蒸気系統の炭素鋼配管を代表とし、以下に評価の詳細を示す。また、主蒸気系統以外の系統の配管(主給水系統、補助蒸気系統、蒸気発生器ブローダウン系統)の評価を添付-3、4に示す。 評価仕様 						
	表13-1 評価仕様						
	評価対象配管 ライン数 種別 技術規格 との対応** 減肉条件						
	主蒸気系統配管 4 FAC なし (知見拡充箇所) 必要最小肉厚 (周軸方向一様減肉)						
	※()内の記載は社内管理区分を示す。						
	 3.解析モデル (1)解析手法 はりモデル解析 (2)解析モデル図 評価対象ラインのうち,高経年化技術評価書に代表で記載した応力の厳しい箇所を含む範囲の解析モデル図を添付-1に示す。 						
	 4.評価結果 評価結果を添付-2に示す。 以上 						

-13-2-

添付−1 (1/3)

添付−1 (2/3)

主蒸気系統配管 A-主蒸気配管 (CV外) 【S₁地震】

添付−1 (3/3)

		耐震 重要度		応力種別	全箇所必要最小肉厚条件モデル		
系統分類	配管名称				はりモデル評価		
					発生応力/ 許容応力 [※]	応力比	評価
	A-主蒸気配管 (CV内)	S	Ss	一次	103/324	0.32	0
				一次+二次	112/336	0.33	0
			S1	一次	89/168	0.53	0
				一次+二次	112/336	0.33	0
	B-主蒸気配管 (CV内)	S	Ss	一次	106/324	0.33	0
				一次+二次	89/336	0.26	0
			S ₁	一次	85/168	0.51	0
十悲与玄纮				一次+二次	125/336	0.37	0
土忩风示规	A-主蒸気配管 (CV外)		Ss 一次 253/329 0.7 一次+二次 395/418 0.9	0.77	0		
		s -		一次+二次	395/418	0.94	0
			c	一次	121/209	0.58	0
			51	一次+二次	139/418	0.33	0
			Se	一次	164/329	0.50	0
	B-主蒸気配管 (CV外)	s -	58	一次+二次	221/418	0.53	0
			S1	一次	84/209	0.40	0
				一次+二次	61/418	0.15	0

泊1号炉 主蒸気系統配管の内面からの腐食(流れ加速型腐食)に対する 耐震安全性評価結果一覧

※ 発生応力及び許容応力の単位はMPa

評価書に記載した評価結果

主蒸気系統配管以外の内面からの腐食(流れ加速型腐食) に対する耐震安全性評価について

1. 評価仕様

主蒸気系統配管以外の評価仕様を表13-3-1に示す。

表13-3-1 評価仕様					
評価対象配管	ライン数	種別	技術規格 との対応 [*]	減肉条件	
主給水系統配管	4	FAC	あり (主要箇所)	必要最小肉厚 (周軸方向一様減肉)	
補助蒸気系統配管	1	FAC	なし (知見拡充箇所)	必要最小肉厚 (周軸方向一様減肉)	
蒸気発生器ブロー ダウン系統配管	2	FAC	なし (主要箇所)	必要最小肉厚 (周軸方向一様減肉)	

※()内の記載は社内管理区分を示す。

- 2. 解析モデル
- (1) 解析手法

はりモデル解析

(2) 解析モデル図

評価対象ラインのうち,高経年化技術評価書に代表で記載した応力比の厳しい箇所を 含む範囲の解析モデル図を次頁以降に示す。(補助蒸気系統配管は定ピッチスパン法に よる評価のため除く)

3. 評価結果

評価結果を添付-4に示す。

PEN#304 EL. 29.0m

主給水系統配管 B-主給水配管 (CV内) 【Ss地震】

主給水系統配管 B-主給水配管 (CV外) 【Ss地震】

添付-3 (4/8)

主給水系統配管 B-主給水配管(CV内) 【S1地震】

-13-10-

蒸気発生器ブローダウン系統 配管 A-SGBD配管(CV外) 【S₁地震】

膝付−3(8/8)

					全箇所必要最小肉厚条件モデル		
系統分類	配管名称	耐震 重要度		応力種別	はりモデル評価		
					発生応力/ 許容応力 [※]	応力比	評価
	A-主給水配管 (CV内)	S	Ss	一次	130/380	0.34	0
				一次+二次	126/456	0.28	0
			S_1	一次	92/228	0.40	0
				一次+二次	86/456	0.19	0
		S	Ss	一次	150/380	0.39	0
	B-主給水配管			一次+二次	186/456	0.41	0
	(CV内)		S ₁	一次	116/228	0.51	0
主 始北亚姑				一次+二次	255/456	0.56	0
土柏小术和	A-主給水配管 (CV外)	S	Ss	一次	61/426	0.14	0
				一次+二次	97/540	0.18	0
			S ₁	一次	45/270	0.17	0
				一次+二次	63/540	0.12	0
	B-主給水配管 (CV外)	S	Ss	一次	133/426	0.31	0
				一次+二次	229/540	0.42	0
			S_1	一次	69/270	0.26	0
				一次+二次	102/540	0.19	0
補助蒸気系統	補助蒸気配管 (1次系)	С		С	156/179	0.87	0
	A-SGBD配管	S	Ss	一次	47/329	0.14	0
				一次+二次	293/418	0.70	0
蒸気発生器 ブローダウン 系統	CVBD内		S_1	一次	38/209	0.18	0
				一次+二次	191/418	0.46	0
	B-SGBD配管		Sa	一次	50/329	0.15	0
		c	38	一次+二次	227/418	0.54	0
	CVBD内	2	S_1	一次	40/209	0.19	0
				一次+二次	150/418	0.36	0

泊1号炉 主蒸気系統配管以外の内面からの腐食(流れ加速型腐食)に対する 耐震安全性評価結果一覧

※ 発生応力及び許容応力の単位はMPa

評価書に記載した評価結果

別紙 16

タイトル	バッフルフォーマボルトの照射誘起型応力腐食割れが 抽出されない理由について
説明	パッフルフォーマボルトの耐震安全性評価を不要とした理由を以下に記 す。 パッフルフォーマボルトの照射誘起型応力腐食割れについては、高経年 化対策上着目すべき経年劣化事象として、炉内構造物の技術評価書(2.3.2 パッフルフォーマボルト等の照射誘起型応力腐食割れ b. ①健全性評価) に て以下の評価を行っている。 ・運転開始後 60 年時点でのボルトの損傷本数は0本となり、安全に関わ る機能を維持でき、炉心の健全性に影響を与える可能性は小さいと考 えられる。 ・本事象は冷温停止状態では進展することはないことから、問題となる 可能性はない。 この結果を受けて、耐震安全性評価は、パッフルフォーマボルトの損傷 を想定する必要はなく、評価不要としている。